{ "cells": [ { "cell_type": "markdown", "id": "d9978e48", "metadata": {}, "source": [ "# Jupyter notebook a základy Pythonu" ] }, { "cell_type": "markdown", "id": "9b3b7853", "metadata": {}, "source": [ "
On-line interaktivní verze: Pro spuštení interaktivní verze této stránky klikněte ve vrchním menu na a zvolte Binder, ve kterém lze Jupyter notebook (JP) upravovat a následně uložit na disk.
" ] }, { "cell_type": "markdown", "id": "fd0e6a02", "metadata": {}, "source": [ "
Tip: Tento soubor je možné stáhnout kliknutím na , a to ve formě *.ipynb pro pozdější off-line editaci v prostředí Anaconda, nebo pro on-line editaci v Google Colab.
" ] }, { "cell_type": "markdown", "id": "c5252b08", "metadata": {}, "source": [ "## Interaktivní Jupyter notebook" ] }, { "cell_type": "markdown", "id": "42f2669a", "metadata": {}, "source": [ "Napište `print('Hello, World!')` a stiskněte `Shift` `+` `Enter` (nebo `Ctrl` `+` `Enter`)" ] }, { "cell_type": "code", "execution_count": 1, "id": "b0648bc0", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hello, World\n" ] } ], "source": [ "print('Hello, World')" ] }, { "cell_type": "markdown", "id": "b721cc85", "metadata": {}, "source": [ "Pomocí klávesy `b` vložíte další řádek do JP.\n", "* Stiskněte `b`." ] }, { "cell_type": "markdown", "id": "6ee35abd", "metadata": {}, "source": [ "Odstranění řádku: vyberte řádek v JP a stiskněte `d` `+` `d`" ] }, { "cell_type": "markdown", "id": "90db19d6", "metadata": {}, "source": [ "Klávesou `a` vložíte nový řádek nad právě vybraný.\n", "1. Stiskněte `a`. \n", "2. Vyberte tento nový řádek a stiskněte `m`. Nyní lze do řádku místo kódu zapisovat text,\n", "3. Zadávání ukončíte stisknutím kombinace `Shift` `+` `Enter`.\n", "4. Pokud chcete řádek převést na kód, stiskněte `y`.\n" ] }, { "cell_type": "markdown", "id": "b9d676c5", "metadata": {}, "source": [ "**Pro nápovědu stiskněte `h`.**" ] }, { "cell_type": "markdown", "id": "af3c3908", "metadata": {}, "source": [ "## Python" ] }, { "cell_type": "markdown", "id": "da9593e8", "metadata": {}, "source": [ "Jednořádkový komentář se zadává za znak `#`, více řádků lze zakomentovat pomocí `\"\"\"` a `\"\"\"`:" ] }, { "cell_type": "code", "execution_count": 2, "id": "3c111cdf", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hello, World!\n" ] } ], "source": [ "# toto je komentar\n", "\"\"\"\n", "Komentar\n", "na vice\n", "radku...\n", "\"\"\"\n", "print(\"Hello, World!\") " ] }, { "cell_type": "markdown", "id": "0f57beed", "metadata": {}, "source": [ "Inicializace proměnných `a`, `b`, základní aritmetické operace a výpis výsledku pomocí funkce `print()`:" ] }, { "cell_type": "code", "execution_count": 3, "id": "fd430961", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Soucet 48.0\n", "Rozdil 38.0\n", "Soucin 215.0\n", "Podil 8.6\n", "Mocnina 147008443.0\n", "Zbytek po deleni 3.0\n" ] } ], "source": [ "a=43\n", "b=5.0\n", "\n", "soucet=a+b\n", "rozdil=a-b\n", "soucin=a*b\n", "podil=a/b\n", "mocnina=a**b\n", "zbytek_po_deleni = a%b\n", "\n", "# vypis\n", "print('Soucet ',soucet)\n", "print('Rozdil ',rozdil)\n", "print('Soucin ',soucin)\n", "print('Podil ',podil)\n", "print('Mocnina ',mocnina)\n", "print('Zbytek po deleni ',zbytek_po_deleni)\n", "\n" ] }, { "cell_type": "markdown", "id": "d7072c21", "metadata": {}, "source": [ "
Cvičení 01.01: Vypočtěte objem jehlanu o stranách 3 a 4 majiícího výšku 7.
" ] }, { "cell_type": "code", "execution_count": 4, "id": "f8e7c0b1", "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "28.0\n" ] } ], "source": [ "a=3.0\n", "b=4.0\n", "v=7.0\n", "S=a*b\n", "V=1/3*S*v\n", "print(V)" ] }, { "cell_type": "markdown", "id": "6838de97", "metadata": {}, "source": [ "## Podmínkové cykly" ] }, { "cell_type": "markdown", "id": "b2d380fc", "metadata": {}, "source": [ "### If ... else" ] }, { "cell_type": "markdown", "id": "14d141a1", "metadata": {}, "source": [ "
Pozor: vnitřní části kódu je nutné odsadit, obvykle se používají čtyři mezery.
" ] }, { "cell_type": "markdown", "id": "ea6851c8", "metadata": {}, "source": [ "Za klíčovými slovy `if` a `else` musíme psát `:`." ] }, { "cell_type": "code", "execution_count": 5, "id": "0fb89fd4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "musi to byt nula\n", "Tento text se vypise vzdy.\n" ] } ], "source": [ "cislo = 0\n", "if cislo > 0:\n", " print(cislo, \"je kladne.\")\n", "elif cislo <0:\n", " print(cislo, \"je zaporne\")\n", "else:\n", " print(\"musi to byt nula\") \n", "print(\"Tento text se vypise vzdy.\")" ] }, { "cell_type": "markdown", "id": "8c21a903", "metadata": {}, "source": [ "### For ..." ] }, { "cell_type": "markdown", "id": "666cc6c5", "metadata": {}, "source": [ "Zde využijeme funkci `range(min,max,krok)`, která vytvoří sekvenci celých čísel od `min` po `max` ***(prvek max není v sekvenci obsažen)*** s uvedeným krokem. Výchozí hodnoty jsou `min = 0` a `krok = 1`." ] }, { "cell_type": "code", "execution_count": 6, "id": "579b2696", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n", "1\n", "2\n", "3\n", "4\n", "5\n", "6\n", "7\n", "8\n", "9\n" ] } ], "source": [ "for x in range(10):\n", " print(x)" ] }, { "cell_type": "markdown", "id": "da5a3417", "metadata": {}, "source": [ "### While..." ] }, { "cell_type": "code", "execution_count": 7, "id": "73794ecf", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n", "1\n", "2\n", "3\n", "4\n", "5\n", "6\n", "7\n", "8\n", "9\n" ] } ], "source": [ "cislo = 0\n", "while cislo < 10:\n", " print(cislo)\n", " cislo = cislo+1 # ekvivalenti zapis je take: cislo += 1" ] }, { "cell_type": "markdown", "id": "04c65198", "metadata": {}, "source": [ "### Break" ] }, { "cell_type": "markdown", "id": "f01a45e2", "metadata": {}, "source": [ "Pomocí příkazu `break` se ukončí probíhající cyklus. Pokud je cyklus vnořený, ukončí se pouze tento vnořený cyklus. V následujícím příkladu využijeme funkci `len()` která nám vrátí délku seznamu vytvořeného pomocí `range()`." ] }, { "cell_type": "code", "execution_count": 8, "id": "0af09a98", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cislo: 0\n", "Pocitadlo: 0\n", "Cislo: 1\n", "Pocitadlo: 1\n", "Hotovo\n" ] } ], "source": [ "# Ze seznamu cislic 0,1,2,... chci vypsat pouze prvni dve cislice. \n", "seznam_cislic = range(0,5)\n", "\n", "for cislo in range(0, len(seznam_cislic)):\n", " if cislo == 2:\n", " break\n", " else:\n", " print('Cislo: ',seznam_cislic[cislo])\n", " print('Pocitadlo: ',cislo)\n", "print(\"Hotovo\")" ] }, { "cell_type": "markdown", "id": "593dafc2", "metadata": {}, "source": [ "### Continue" ] }, { "cell_type": "markdown", "id": "810aec7e", "metadata": {}, "source": [ "Příkaz `continue` ukončí aktuální iteraci v cyklu a pokračuje další iterací." ] }, { "cell_type": "code", "execution_count": 9, "id": "bc4a9d66", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cislo: 0\n", "Pocitadlo: 0\n", "Cislo: 1\n", "Pocitadlo: 1\n", "Cislo: 3\n", "Pocitadlo: 3\n", "Cislo: 4\n", "Pocitadlo: 4\n", "Hotovo\n" ] } ], "source": [ "# Ze seznamu cislic 0,1,2,... chci vypsat vsechny cislice, krome dvojky. \n", "seznam_cislic = range(0,5)\n", "\n", "for cislo in range(0, len(seznam_cislic)):\n", " if cislo == 2:\n", " continue\n", " else:\n", " print('Cislo: ',seznam_cislic[cislo])\n", " print('Pocitadlo: ',cislo)\n", "print(\"Hotovo\")" ] }, { "cell_type": "markdown", "id": "d6963427", "metadata": {}, "source": [ "## Funkce" ] }, { "cell_type": "markdown", "id": "b8c532be", "metadata": {}, "source": [ "Funkce se definuje příkazem `def`. Následuje jméno funkce, seznam vstupních parametrů a vše je zakončené `:`. Tělo funkce musí být odsazené. Funkce může vrátit hodnotu pomocí příkazu `return`." ] }, { "cell_type": "code", "execution_count": 10, "id": "8d4d1368", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Objem jehlanu = 8.0\n" ] } ], "source": [ "def objem_jehlanu(a,b,v):\n", " return 1/3*a*b*v\n", "\n", "print(\"Objem jehlanu = \",objem_jehlanu(2,3,4))" ] }, { "cell_type": "markdown", "id": "752c4109", "metadata": {}, "source": [ "
Cvičení 01.02: Napište funkci, která rozhodne, zda zadané číslo je liché, nebo sudé, a vypište výsledek.
" ] }, { "cell_type": "code", "execution_count": 11, "id": "89ca0f09", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cislo 6 je sude.\n" ] } ], "source": [ "def funkce(c):\n", " if cislo % 2 == 0:\n", " print('Cislo ',c,' je sude.')\n", " else:\n", " print('Cislo ',c,' je liche.')\n", "\n", "cislo = 6\n", "funkce(cislo)" ] }, { "cell_type": "markdown", "id": "851a4b83", "metadata": {}, "source": [ "## Numerická knihovna numpy" ] }, { "cell_type": "markdown", "id": "311930d4", "metadata": {}, "source": [ "Pro import numerické knihovny `numpy` použijeme příkaz:" ] }, { "cell_type": "code", "execution_count": 12, "id": "2a728d2b", "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "id": "e1228e67", "metadata": {}, "source": [ "### Maticové operace" ] }, { "cell_type": "markdown", "id": "e85e1683", "metadata": {}, "source": [ "Pole (vektor, matice) lze vytvářet pomocí funkce `array()`:" ] }, { "cell_type": "code", "execution_count": 13, "id": "a86dcef2", "metadata": {}, "outputs": [], "source": [ "# vektor\n", "a = np.array([1, 2, 3])\n", "\n", "# matice (pole)\n", "A = np.array([[1,2,3],[4,5,6],[7,8,9]])" ] }, { "cell_type": "markdown", "id": "cbecdd4f", "metadata": {}, "source": [ "
Pozor: v poli arrayprvní prvek index 0!
" ] }, { "cell_type": "markdown", "id": "0f5b486f", "metadata": {}, "source": [ "Rozměry pole zjistíme pomocí funkce `shape`:" ] }, { "cell_type": "code", "execution_count": 14, "id": "89ce0972", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(3,)\n", "(3, 3)\n" ] } ], "source": [ "print(a.shape)\n", "print(A.shape)" ] }, { "cell_type": "markdown", "id": "03db48e9", "metadata": {}, "source": [ "Funkce `size` vrátí počet prvků v poli:" ] }, { "cell_type": "code", "execution_count": 15, "id": "6e6cf36f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3\n", "9\n" ] } ], "source": [ "print(a.size)\n", "print(A.size)" ] }, { "cell_type": "markdown", "id": "e876c0e1", "metadata": {}, "source": [ "Matici lze transponovat funkcí `transpose()`:" ] }, { "cell_type": "code", "execution_count": 16, "id": "58b0d0a8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[1 4 7]\n", " [2 5 8]\n", " [3 6 9]]\n" ] } ], "source": [ "A_transponovana = A.transpose()\n", "print(A_transponovana)" ] }, { "cell_type": "markdown", "id": "0a9e7136", "metadata": {}, "source": [ "Pro vytváření polí lze používat následující generátory:" ] }, { "cell_type": "markdown", "id": "45f68d25", "metadata": {}, "source": [ "* Pomocí funkce `arange()` vytvoříme pole s prvky od 0 do 10 **(poslední prvek není obsažen)** a krokem 1:" ] }, { "cell_type": "code", "execution_count": 17, "id": "ef8a07f8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0 1 2 3 4 5 6 7 8 9]\n" ] } ], "source": [ "pole = np.arange(0,10,1)\n", "print(pole)" ] }, { "cell_type": "markdown", "id": "d420d75b", "metadata": {}, "source": [ "* Pomocí funkce `linspace()` vygenerujeme pole s prvky od 0 do 10 **(včetně)**, přičemž počet prvků je 20:" ] }, { "cell_type": "code", "execution_count": 18, "id": "c93f7c06", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 0. 0.52631579 1.05263158 1.57894737 2.10526316 2.63157895\n", " 3.15789474 3.68421053 4.21052632 4.73684211 5.26315789 5.78947368\n", " 6.31578947 6.84210526 7.36842105 7.89473684 8.42105263 8.94736842\n", " 9.47368421 10. ]\n" ] } ], "source": [ "pole = np.linspace(0,10,20)\n", "print(pole)" ] }, { "cell_type": "markdown", "id": "9661621c", "metadata": {}, "source": [ "* Příkazem `logspace()` vytvoříme pole od 0 do 10 s počtem prvků 20 v logaritmickém měřítku ($\\log_{10}$):" ] }, { "cell_type": "code", "execution_count": 19, "id": "1f9a2653", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1.00000000e+00 3.35981829e+00 1.12883789e+01 3.79269019e+01\n", " 1.27427499e+02 4.28133240e+02 1.43844989e+03 4.83293024e+03\n", " 1.62377674e+04 5.45559478e+04 1.83298071e+05 6.15848211e+05\n", " 2.06913808e+06 6.95192796e+06 2.33572147e+07 7.84759970e+07\n", " 2.63665090e+08 8.85866790e+08 2.97635144e+09 1.00000000e+10]\n" ] } ], "source": [ "pole = np.logspace(0,10,20,base=10)\n", "print(pole)" ] }, { "cell_type": "markdown", "id": "c3d2f675", "metadata": {}, "source": [ "* Pomocí funkce `zeros()` vytvoříme nulovou matici 2x2:" ] }, { "cell_type": "code", "execution_count": 20, "id": "3ef71059", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0. 0.]\n", " [0. 0.]]\n" ] } ], "source": [ "pole = np.zeros((2,2))\n", "print(pole)" ] }, { "cell_type": "markdown", "id": "9d49bbbf", "metadata": {}, "source": [ " * Funkcí `ones()` vytvoříme jedničkovou matici 3x3:" ] }, { "cell_type": "code", "execution_count": 21, "id": "ae248187", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[1. 1. 1.]\n", " [1. 1. 1.]\n", " [1. 1. 1.]]\n" ] } ], "source": [ "pole = np.ones((3,3))\n", "print(pole)" ] }, { "cell_type": "markdown", "id": "d0fe6941", "metadata": {}, "source": [ "* Pomocí funkce `eye()` vytvoříme matici 3x3 s jedničkami na diagonále, ostatní hodnoty jsou nulové:" ] }, { "cell_type": "code", "execution_count": 22, "id": "4a4d939e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[1. 0. 0.]\n", " [0. 1. 0.]\n", " [0. 0. 1.]]\n" ] } ], "source": [ "pole = np.eye(3)\n", "print(pole)" ] }, { "cell_type": "markdown", "id": "e5284f01", "metadata": {}, "source": [ "* Pole náhodných čísel v rozmezí 0 az 1 se vygeneruje pomocí funkce `np.random.rand()`:" ] }, { "cell_type": "code", "execution_count": 23, "id": "240b2c29", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0.61459278 0.63305729]\n", " [0.89280065 0.82421926]\n", " [0.35401052 0.44801919]]\n" ] } ], "source": [ "pole_nahodnych_cisel = np.random.rand(3,2)\n", "print(pole_nahodnych_cisel)" ] }, { "cell_type": "markdown", "id": "5b230398", "metadata": {}, "source": [ "Pro přístup k prvkům pole `A` používáme syntaxi `A[i,j]`, kde `i` je index řádku a `j` je index sloupce:" ] }, { "cell_type": "code", "execution_count": 24, "id": "344bf690", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1\n" ] } ], "source": [ "prvni_prvek_pole = A[0,0]\n", "print(prvni_prvek_pole)" ] }, { "cell_type": "markdown", "id": "227daf0a", "metadata": {}, "source": [ "Pro přístup k prvkům pole používáme syntaxi `[min:max:krok]`. Mějme vektor $\\mathbf{v}=(0,1,2,3,4,5,6)$. Nyní z něj vyjmeme první (\"0\") až šestý prvek (\"5\"), a to s krokem 2:" ] }, { "cell_type": "code", "execution_count": 25, "id": "af21ccc2", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0 1 2 3 4 5 6]\n", "[0 2 4]\n" ] } ], "source": [ "v = np.arange(0,7)\n", "print(v)\n", "vyber_z_v = v[0:6:2]\n", "print(vyber_z_v)" ] }, { "cell_type": "markdown", "id": "4b156f32", "metadata": {}, "source": [ "Podobně u matice $A$ vybereme např. poslední dva prvky ve třetím sloupci." ] }, { "cell_type": "code", "execution_count": 26, "id": "3a201f17", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[6 9]\n" ] } ], "source": [ "A_vyber = A[1:,2]\n", "print(A_vyber)" ] }, { "cell_type": "markdown", "id": "6fa37749", "metadata": {}, "source": [ "U matice $A$ vybereme první řádek:" ] }, { "cell_type": "code", "execution_count": 27, "id": "ddf0d009", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 2 3]\n" ] } ], "source": [ "prvni_radek = A[0,:]\n", "print(prvni_radek)" ] }, { "cell_type": "markdown", "id": "c51631f5", "metadata": {}, "source": [ "U matice $A$ vybereme první sloupec:" ] }, { "cell_type": "code", "execution_count": 28, "id": "41e5a359", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 4 7]\n" ] } ], "source": [ "prvni_sloupec = A[:,0]\n", "print(prvni_sloupec)" ] }, { "cell_type": "markdown", "id": "911af449", "metadata": {}, "source": [ "Násobení matic a vektorů se provádí pomocí operátoru `dot`:" ] }, { "cell_type": "code", "execution_count": 29, "id": "132db16a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[1 2 3]\n", " [4 5 6]]\n", "(2, 3)\n", "[[1 2]\n", " [3 4]\n", " [5 6]]\n", "(3, 2)\n", "[[22 28]\n", " [49 64]]\n" ] } ], "source": [ "# matice 2x3\n", "A = np.array([[1,2,3],[4,5,6]])\n", "print(A)\n", "print(A.shape)\n", "\n", "# matice 3x2\n", "B = np.array([[1,2],[3,4],[5,6]])\n", "print(B)\n", "print(B.shape)\n", "\n", "# vysledek\n", "C = np.dot(A,B)\n", "print(C)\n" ] }, { "cell_type": "markdown", "id": "8f346e85", "metadata": {}, "source": [ "
Pozor: operace C*C násobí matice po prvcích (není to maticové násobení)
" ] }, { "cell_type": "code", "execution_count": 30, "id": "3adc6bd1", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[1856 2408]\n", " [4214 5468]]\n", "[[ 484 784]\n", " [2401 4096]]\n" ] } ], "source": [ "# maticove nasobeni\n", "print(np.dot(C,C))\n", "\n", "# nasobeni po prvcich\n", "print(C*C)" ] }, { "cell_type": "markdown", "id": "ef73e5a6", "metadata": {}, "source": [ "### Funkce" ] }, { "cell_type": "markdown", "id": "4bb7f2ac", "metadata": {}, "source": [ "`numpy` obsahuje často používané funkce a konstanty (napr. `sqrt()`, `log()`, `log10()`, `sin()`, `abs()`, `e`, `pi`, ...):" ] }, { "cell_type": "code", "execution_count": 31, "id": "e2bf71fc", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.23606797749979\n", "1.6094379124341003\n", "0.6989700043360189\n", "-0.9589242746631385\n", "3\n", "2.718281828459045\n", "3.141592653589793\n" ] } ], "source": [ "print(np.sqrt(5))\n", "print(np.log(5))\n", "print(np.log10(5))\n", "print(np.sin(5))\n", "print(np.abs(-3))\n", "print(np.e)\n", "print(np.pi)" ] }, { "cell_type": "markdown", "id": "ecbd8c5e", "metadata": {}, "source": [ "Součet prvků v poli je dán funkcí `sum()`:" ] }, { "cell_type": "code", "execution_count": 32, "id": "8a9e5b9b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "21\n" ] } ], "source": [ "# soucet prvku v poli\n", "soucet = np.sum(A)\n", "print(soucet)" ] }, { "cell_type": "markdown", "id": "3205a20c", "metadata": {}, "source": [ "Minimální a maximální hodnotu v poli určíme funkcí `min()` a `max()`:" ] }, { "cell_type": "code", "execution_count": 33, "id": "2e7c9570", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6\n", "1\n" ] } ], "source": [ "# maximalni hodnota v poli\n", "maximum = np.max(A)\n", "print(maximum)\n", "\n", "# minimalni hodnota v poli\n", "minimum = np.min(A)\n", "print(minimum)" ] }, { "cell_type": "markdown", "id": "98b853d4", "metadata": {}, "source": [ "Funkce `average()` vrací průměrnou hodnotu; `std()` je směrodatná odchylka a `var()` je rozptyl:" ] }, { "cell_type": "code", "execution_count": 34, "id": "25288dcf", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.5\n", "1.707825127659933\n", "2.9166666666666665\n" ] } ], "source": [ "# prumerna hodnota\n", "prumer = np.average(A)\n", "print(prumer)\n", "\n", "# smerodatna odchylka\n", "smerodatna_odchylka = np.std(A)\n", "print(smerodatna_odchylka)\n", "\n", "# rozptyl\n", "rozptyl = np.var(A)\n", "print(rozptyl)" ] }, { "cell_type": "markdown", "id": "2da1cf4f", "metadata": {}, "source": [ "Index prvku v poli lze najít pomocí funkce `argwhere()`:" ] }, { "cell_type": "code", "execution_count": 35, "id": "3c5c3d53", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0 2]]\n" ] } ], "source": [ "index_hledaneho_prvku = np.argwhere(A == 3)\n", "print(index_hledaneho_prvku)" ] }, { "cell_type": "markdown", "id": "4567bce0", "metadata": {}, "source": [ "
Tip: Další příklady a návody pro práci s knihovnou numpy lze nalézt na https://numpy.org/.
" ] }, { "cell_type": "markdown", "id": "919d65ad", "metadata": {}, "source": [ "## Visualizace dat" ] }, { "cell_type": "markdown", "id": "64414525", "metadata": {}, "source": [ "Pro kreslení grafů využijeme knihovnu `matplotlib.pyplot`:" ] }, { "cell_type": "code", "execution_count": 36, "id": "2e20aa46", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "id": "4fea083a", "metadata": {}, "source": [ "### Graf jedné proměnné" ] }, { "cell_type": "markdown", "id": "f4e29513", "metadata": {}, "source": [ "Vygenerujeme $x$ a $y$ hodnoty pro funkci `sin()`:" ] }, { "cell_type": "code", "execution_count": 37, "id": "368b41d6", "metadata": {}, "outputs": [], "source": [ "x = np.linspace(0,4*np.pi,100)\n", "y = np.sin(x)" ] }, { "cell_type": "markdown", "id": "3a3b05c7", "metadata": {}, "source": [ "Nejdříve je potřeba vytvořit obrázek pomocí `fig`. Vykreslení dat provedeme příkazem `plot()`:" ] }, { "cell_type": "code", "execution_count": 38, "id": "4653055f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6KklEQVR4nO3deXxc9Xno/88zM9pXa7Utydos78bGFpYXbDBmdVIcEhIgJHVDW5cW2rS3bULae/tL29smt2napjdbyUp/PwiFQIoDBswO3uQNW95kW5ttyVpHmyVZ+/f3x8wQIWS0zHJmed6v17w0c+acOY/sM3rOdxdjDEoppSKXzeoAlFJKWUsTgVJKRThNBEopFeE0ESilVITTRKCUUhHOYXUAM5GRkWEKCgqsDkMppULKkSNH2owxmeO3h2QiKCgo4PDhw1aHoZRSIUVELky0XauGlFIqwmkiUEqpCKeJQCmlIpwmAqWUinCaCJRSKsL5JBGIyE9FpEVETl7jfRGRfxeRKhGpEJFVY967U0TOut97zBfxKKWUmjpflQh+Dtz5Me/fBZS4HzuAHwCIiB34nvv9JcADIrLERzEppZSaAp+MIzDGvCsiBR+zyzbgP41rzusDIpIqInOAAqDKGFMDICJPu/c97Yu4gp0xhqMXO6lu6SE5zkFyXBTFmYlkJ8daHZoKE86eAU5d7qayqZv89ARuWpBJbJTd6rBUkAnUgLIc4NKY1/XubRNtL5voA0RkB67SBPPmzfNPlAEyMmrYfaqJx9+r4f2LnR96L8ouPHRjIX98SwmJMSE53k8FgfIaJ3/1qxNUt/Z+aHtclJ3NizL5/Y1FXD9vlkXRqWATqL80MsE28zHbP7rRmMeBxwFKS0tDdjWdzr5Bfudnhzh2qZN5afH83bal3LwgiysDQ3RdHeL5ow38xzs1PH+0gf/5icVsW5ljdcgqhAyNjPJvr5/j+29XMy8tnr/auohlOSkszE6isukKL59s5OUTTbx+uoV//PRy7l2da3XIKggEKhHUA3ljXucCl4Hoa2wPS209A3zhx+XUtPby7c+u4FPX52C3fTgXri/O4Itr8/l/dp7iy08f4+rgCPevCe0SkAqMzr5Btv/sEMcvdXJfaR5/81tLSBhTqtwwP4YN8zP4i9sX8kdPHuUvnj1OVUsPX7ljITbbRPdkKlIEqvvoTuC33b2H1gJdxphG4BBQIiKFIhIN3O/eN+w0d/dz33/sp87Zy09+p5TPrM79SBLwWJGXyjN/sI6bF2byV786wSsnGwMcrQo1wyOjPPrU+5y+3MX3H1zF/7n3ug8lgbFS46N54qE1fL5sHj98p5qvPleBLlkb2XzVffQXwH5goYjUi8jvisjDIvKwe5ddQA1QBfwI+CMAY8ww8CjwKnAGeMYYc8oXMQWT/qERvvDjcpq6+nniS2vYWPKRyf8+Itph4/sPrmJlXip/8otj7KtqC0CkKlT975fOsKeqjX+8Zzlbl8+ZdP8ou41/+NQyHt08n2eP1PPs4foARKmClYTinUBpaakJpdlH/+7Xp/np3lr+86E1bFoweRIYq7NvkPv+4wANnVd59c82kZMa56coVah6qvwif/WrE/zejYX8z09Or/f1yKjht39azuG6Dl54dAOLZif7KUoVDETkiDGmdPx2HVnsZ/uq2/jp3lq2r8ufdhIAVzH+x9tLGRk1/K//PqlFePUhpy538TcvnOSmBZl8beviaR9vtwn/dt/1JMdF8ciTR+kdGPZDlCrYaSLwo+7+If7y2QqKMhJ47K7pf0k98tLi+fPbF/BmZQsvndD2AuVijOHrO0+RHBfFd+5fec02p8lkJsXwnftXUtvWy9/+OuxqZtUUaCLwo7//9Wkau67y7c+tIC7au0E8v7O+gOU5KXx952m6+oZ8FKEKZS8cu8yhug6+csdCUuOjvfqs9cUZ/P7GIp45XM/Jhi4fRahChSYCPznZ0MWzR+rZsanYJwN3HHYb3/j0cjr6BvnGy2d8EKEKZT0Dw/zjrjNcl5vC50rzJj9gCh65ZT6z4qP4h5fOaBVkhNFE4Cf/8to5UuKi+KPNxT77zGU5KfzejYU8feiS3rVFuP/7xnlargzwt3cv9dkYgOTYKL68pYT9NU7eOtvik89UoUETgR8cudDOm5Ut/MFNRSTHRvn0sx+5ZT5JsQ6++2aVTz9XhY66tl5+ureWe1fn+nyaiM+X5VOYkcA3dlUyPDLq089WwUsTgY8ZY/jWq2fJSIzhd9YX+Pzzk2Oj+NKGQl451URlU7fPP18Fvx++U42I8JU7Fvr8s6MdNr5650LOt/Tw7BEdWxApNBH42N4qJwdq2nlkczHx0f6ZweOhDQUkRNu1VBCBWrr7ef5oA59dnUuWn2apvWPpbErzZ/Gd188zpKWCiKCJwIeMMfzz7rPMTYnl82X+mx8oNT6a7esLeOlEI1UtV/x2HhV8frK3luHRUXZsKvLbOUSEP9pcTFN3P7u0u3JE0ETgQ0cudHDsUid/uHk+MQ7/zvn+uzcWEuuw8723qv16HhU8uvuHeOrARe5aPof89AS/nuvmBVkUZSbwkz212oMoAmgi8KEn9l8gKdbBZ1b5f+ro9MQYvrgunxeONXDR2ef38ynrPXngIlcGhvnDm3zXE+1abDbhoQ2FVNR3caiuw+/nU9bSROAjLd39vHyikc+V5vmtbWC8hzYUIiI8dfBiQM6nrNM/NMJP99aysSSDZTkpATnnZ1blkhofxU/21ATkfMo6mgh85KmDFxkeNXxxbX7Azjk7JZYti7J49vAlBoe1US+c/fr4ZVqvDPAHm/xfGvCIi7bzYNk8dp9u5oKzd/IDVMjSROADg8OjPFl+kZsXZlKQ4d+62/EeXJuPs3eQV081BfS8KrD+69AlijIT2DA/PaDn/e11BThsws/21gX0vCqwNBH4wKunmmi9MsB2P4wbmMzG+RnkpcXxZPmFgJ9bBUZVSw+HL3RwX2keIoFdSSw7OZZPXjeXXx6p5+rgSEDPrQJHE4EP/Of+OvLT47lpCgvO+JrNJjywZh4HatqpaukJ+PmV/z1z+BIOm/DpVdasL3zfDXn0DAxrqTOM+WqFsjtF5KyIVInIYxO8/5cicsz9OCkiIyKS5n6vTkROuN8LndVm3KparnCoroMvlOVbtu7rZ1fn4bAJT5Vro3G4GRwe5fmj9WxZnEVmUowlMawpSCMvLY5f6kjjsOV1IhARO/A94C5gCfCAiHxomSRjzLeMMSuNMSuBrwHvGGPax+yy2f3+R1bOCXbPH23AbhM+db3/u4xeS2ZSDHcsm81zR+vpH9Liezh5s7KZtp5B7r/BfwMUJ2OzCZ9Zlcve6jYaOq9aFofyH1+UCNYAVcaYGmPMIPA0sO1j9n8A+IUPzmu50VHDC8cus7Ekw7K7NY8H18yj6+qQFt/DzH8dusTs5NgZrW7nS59ZlYsx8KujWioIR75IBDnApTGv693bPkJE4oE7gefGbDbAbhE5IiI7rnUSEdkhIodF5HBra6sPwvbewbp2Gjqvco+FpQGPtUXpzE6O5dfHL1sdivKRxq6rvHOulc+W5s549TFfyUuLp6wwjeeONuhI4zDki0Qw0RV6rSvlt4C946qFNhhjVuGqWnpERDZNdKAx5nFjTKkxpjQz09q7I4//fr+BhGg7ty+ZbXUo2GzCb62YwzvnWunsG7Q6HOUDzx9tYNS42oCCwb2rc6lt6+XoRR1pHG58kQjqgbFXai5wrdvS+xlXLWSMuez+2QL8CldVU9DrHxrhpRON3LFsttfLUPrK3StyGBoxvHxSq4fCwYsVjayal8q89HirQwFg6/I5xEfbtdE4DPkiERwCSkSkUESicf2x3zl+JxFJAW4CXhizLUFEkjzPgduBkz6Iye/erGzhSv8wn77emi59E1mWk0xRRgI7j2n1UKirbu3hTGM3n7hurtWhfCAhxsFdy+bw4vFG7ZQQZrxOBMaYYeBR4FXgDPCMMeaUiDwsIg+P2fUeYLcxZuxY9Wxgj4gcBw4CLxljXvE2pkB4/mgD2ckxrCsO7EjPjyMi/NaKuRyoddLU1W91OMoLL1U0IgKfWD7H6lA+5O6Vc7kyMMye821Wh6J8yCfjCIwxu4wxC4wxxcaYf3Bv+6Ex5odj9vm5Meb+ccfVGGNWuB9LPccGu86+Qd4+28K2lTmWN+KNd/fKuRgDL1ZoqSCUvVhxmRvy05id4p/FZ2ZqfXE6KXFR7Dqp6xSEEx1ZPAOvnW5meNTwyeuC624NoDgzkeU5KezU3kMh61zzFc419/DJFcF3fUXZbdy2JJvXTjfrRIdhRBPBDLx6qomc1DiWB2g64Om6e8VcKuq7qG3TGSND0YsVjdgE7lxmfW+0iWxdPpsr/cPsrdbqoXChiWCaegaGefd8G3csnR3wCcCmynMn+bIW30OOMYYXKy5TVphOVlJwVQt5bJifQVKsg10Ven2FC00E0/T22RYGh0eD9m4NYE5KHCtyU9h9qtnqUNQ0VTZdoaa1NyirhTxiHHZuW5zN7tPNurh9mNBEME2vnGwiIzGa1fmzrA7lY92+dDbHLnXS3K29h0LJrhPuaqGlwXujAXDX8jl0XR1if7XT6lCUD2gimIb+oRHeqmzhtiWzg6630Hi3LckG4PUzWioIJa+dbuaGgjTSE62du2oyG0sySIi2a/VjmNBEMA17q9roHRwJ6mohj5KsRArS47V6KIRcau+jsunKB0k8mMVG2dmyOJtXTzUzrNVDIU8TwTS8crKJpFgH64qCZxDZtYgIty+dzb7qNq70D1kdjpqCN9ylty2Lgz8RgKtXU3vvIEcvdlodivKSJoIpGh4Z5bUzzdy6OJtoR2j8s92+JJuhEcPbZ4Njtlb18V4/08L8rEQKA7zu9UxtLMkgyi68UamlzlAXGn/RgsChug46+4a4Y2lo3K0BXD9vFhmJ0ew+rV/UYNfdP8SBGie3hkhpACApNoqywnTePNNidSjKS5oIpuitsy1E2YWNFqxLPFN2m7BlUTZvVbYwMKyThAWzd862MjxquG1JltWhTMsti7I439LDRWef1aEoL2gimKI3K1soK0wnIcZhdSjTcvvSbHoGhjlQ0z75zsoyr59pJj0hmpV5wd0tebwti12JS6uHQpsmgim41N5HVUsPmxeF1t0auEaBxkbZeKtSi+/BamhklLcqW7hlUVbQd0seLz89geLMBN7U6yukaSKYgrfOui7yzQtDp1rIIzbKzrqidN4+q1/UYHWorp3u/uGQ6S003pbF2RyocdIzMGx1KGqGNBFMwZuVLRSkx1OUmWh1KDNy88Is6px9OgldkHrjTAvRDhsbSzKsDmVGblmUxdCI4b1z2jstVPkkEYjInSJyVkSqROSxCd6/WUS6ROSY+/E3Uz3WalcHR9hf7QzJaiGPm90lGS0VBKd3zrVSVpgWcu1PHqvzZ5Ec6+ANrR4KWV4nAhGxA9/Dtfj8EuABEVkywa7vGWNWuh9/N81jLbO/po2B4VE2LwzdRJCfnkBRRoKOJwhC9R2u9qebFoRetaNHlN3GTQuzeKuyhdFRY3U4agZ8USJYA1S5VxsbBJ4GtgXg2IB4s7KF+Gg7ZUVpVofilZsWZnKgxqlrzQaZd8+55vS/OQTbn8basigLZ+8gFQ1dVoeiZsAXiSAHuDTmdb1723jrROS4iLwsIkuneawljDG8VdnKhvkZxDjsVofjlZsXZjEwPMr+Gp0tMpi8c66FnNQ4ikO0/cnjRnf7hrYThCZfJIKJ+ruNLx8eBfKNMSuA/wv89zSOde0oskNEDovI4dbWwFxs51t6aOi8GtLVQh5lhWnERtl4R6uHgsbQyCh7q5xsWpARtIscTVVGYgzLcpJ5Txe1D0m+SAT1QN6Y17nAhxbMNcZ0G2N63M93AVEikjGVY8d8xuPGmFJjTGlmZmCK0e+6725CvdgO2o00GB290EHPwHBItw+MtbEkk6MXO3SSwxDki0RwCCgRkUIRiQbuB3aO3UFEZov7lkdE1rjP65zKsVZ693wbxZkJzE2NszoUn9BupMHlnXOt2G3C+vmh2W10vE0lmQyPGl2sJgR5nQiMMcPAo8CrwBngGWPMKRF5WEQedu92L3BSRI4D/w7cb1wmPNbbmHyhf2iEg7XOkJpbaDKeKi4tFQSHd8+3snreLJJjo6wOxSdW588iPtrOu+e1+jHU+KTjsru6Z9e4bT8c8/y7wHenemwwOHKhg/6h0ZAd5DOReenxFKTHs7eqjS9tKLQ6nIjWemWAkw3d/OUdC60OxWeiHTbWFaVrO0EI0pHF1/De+TYcNqEsBBahmY4N8zM4UNOui45b7D33XXO4tA94bFqQyQVnHxecWv0YSjQRXMOeqlZW5c8iMURHe17LxpIMegaGOXap0+pQItq751pJT4hmyZxkq0PxqU3uxPaudiMNKZoIJuDscRXbN4ZJI95Y64oysAns0eK7ZYwx7KlysmF+BrYQm210MgXp8eSlxfGuXl8hRRPBBPa6ez1sDLNiO0BKfBTLc1PZU6VfVKuca+6hrWeAG8PwRkPEtXjT/mqnVj+GEE0EE3jvXCspcVEsz0mxOhS/uHF+OscudWp/b4vsdSfhDWHUEWGsTSWZWv0YYjQRjOMqtrexYX56yC0SMlUb5mcwMmp01TKL7K1qoyA9npwwGZ8y3rqidGzym4Sngp8mgnGqW3to7OrnxvnhVy3ksTp/FrFRNv2iWmBoZJQDNa72gXCVEh/FspwU9lXpwLJQoYlgHE8jajiNHxgvxmFnTWH6B10YVeBU1HfSOzgSlu0DY60vzuD9Sx30DeqqZaFAE8E4+6qd5KXFkZcWb3UofrVxfgbVrb00dl21OpSIsue8ExFYVxxe41PG2zA/naERw8FarX4MBZoIxnDVmztZXxTed2vAB1UT2o00sPZWtbFsbgqp8dFWh+JXpflpRNttOu9QiNBEMMbpy9109w+zfn54360BLJqdREZitLYTBFDvwDDvX+oI6/YBj7hoO9fPS2VvtV5foUATwRj73BdtuBfbAWzu6TP21zgxRpcXDISDde0MjRg2RMCNBrhKnacud9PZN2h1KGoSmgjG2FftpCQrkaykWKtDCYj1xek0dw/otNQBsvd8G9EOGzcUhPayp1O1YX46xqDVQyFAE4Hb4PAoh+raWR8BpQGPde4J9XT5ysDYV+1k9bxZxEaF9rKnU3VdbioJ0XatHgoBmgjcKuo76RscYV1x+NffehRmJDA7OZZ9esfmd519g5xp6o6IakePKLuNNYVpOp4gBGgicNtb5erWt7YoMort4JoXZl1xOuXaTuB3B2raMSYy2p/G2jA/g5o27aYc7HySCETkThE5KyJVIvLYBO8/KCIV7sc+EVkx5r06ETkhIsdE5LAv4pmJfdVtLJ2bHPbd+sZbV5xOW88g51t6rA4lrB2ocRIXZWdFbqrVoQSUJ/FpO0Fw8zoRiIgd+B5wF7AEeEBElozbrRa4yRhzHfD3wOPj3t9sjFlpjCn1Np6ZuDo4wvsXO1kfQdVCHp52gn3ajdSvDtQ4KS2YRbQjsgrhi2cnkxIXxQFthwpqvrgq1wBVxpgaY8wg8DSwbewOxph9xpgO98sDQK4PzuszRy50MDgyGnHFdoC8tHhyZ8Vpg7EfOXsGqGy6wtowW+1uKmw2oawwTSc4DHK+SAQ5wKUxr+vd267ld4GXx7w2wG4ROSIiO651kIjsEJHDInK4tdW3c+Tsr2nDbhPWREi3vvHWF6dzoKad0VFtJ/CHcvc0C5GYCMBVPXSxvY+GTm0nCFa+SAQTzdU84V8UEdmMKxF8dczmDcaYVbiqlh4RkU0THWuMedwYU2qMKc3M9O3MoAdq2rkuN4WEMFuWcqrWFafTdXWI043dVocSlvZXO4mPtnNdbniubzEZTwI8oO0EQcsXiaAeyBvzOhe4PH4nEbkO+DGwzRjzwRVhjLns/tkC/ApXVVPA9A0Oc/xSZ8TerYFr+UpA63H9ZH+NkxsK0oiyR1b7gMfC7CRmxWs7QTDzxZV5CCgRkUIRiQbuB3aO3UFE5gHPA180xpwbsz1BRJI8z4HbgZM+iGnKjlzoYHjURHQimJ0SS1FGgvbs8IPWKwNUtfREZPuTh6udIF3boYKY14nAGDMMPAq8CpwBnjHGnBKRh0XkYfdufwOkA98f1000G9gjIseBg8BLxphXvI1pOg7UOLHbhNL8WYE8bdApK0rnYF07I9pO4FOeu+B1EXyjAa7xOfUdV7nU3md1KGoCPqkUN8bsAnaN2/bDMc9/D/i9CY6rAVaM3x5I5RHePuCxtiiNXxy8yJnGbpaF6VrNVthf4yQpxsHSuclWh2Ipz4j98tr2sF/rIxRFZqWlW9/gMMfrI7t9wKOs0N2gp8V3nzpQ4+SGwjQcEdo+4FGSlUhaQrRWPwapiL46j17oZGgkstsHPGanxFKYkaD9vX2opbufmtbeiJq25Fp+M55AE0EwiuhEoO0DH1ZWmMbBWqe2E/iIZ/yAp7QV6dYVp9PQqe0EwSjiE4G2D/zG2qJ0uvuHqWzS8QS+UF7rJFHbBz6wVqc9D1oRmwi0feCjytxVGFo95BvlNe2UFsyK+PYBD087QbleX0EnYq9QbR/4qDkpceSnx1Oud2xea+sZ4HxLj1YLjSHimsalvFavr2ATsYnA0z6wWtsHPqSsMI2DdTrvkLcOetoHtKH4Q8rc4wl03qHgErGJoLzWybKcFBK1feBD1hal09k3xNnmK1aHEtLKa1zzCy3XMRkf4ikhaakzuERkIugfGuH4pS7WFurd2nhlRTqewBfKa9tZnT8rYucXupZFs5NIiYvSdoIgE5FX6dGLrvUHtNj+UTmpceSlxWki8EJ772DErj8wGZtNuEHbCYJORCaC8pp2bAKlEbr+wGTKCtM5WKvtBDP1QfuAljgntLYojTpnH01d/VaHotwiMxHUOlkyN5nk2CirQwlKZYVpdPQNUdWq6xjPRHmtk9goG9dF2PrEU+UpKWmpIHhEXCIYGHatT6zd+q7tgy+qVg/NSHlNO6vmRd76xFO1eE4ySbEOHa8SRCLuSq2o72JgeJQ1Wmy/ptxZccxJieVArX5Rp6urb4gzTd16o/Ex7NpOEHQiLhF47nIjdX3iqRBxTRBWXtOOMdpOMB2H6toxRscPTKasMI2a1l5armg7QTCIvERQ286i2UnMSoi2OpSgVlaUTlvPADVtvVaHElLKa51EO2yszEu1OpSg5ummfFBLnUHBJ4lARO4UkbMiUiUij03wvojIv7vfrxCRVVM91peGRkY5cqFDe3NMgeffSPt7T095bTsr81KJjbJbHUpQWzY3mYRou15fQcLrRCAiduB7wF3AEuABEVkybre7gBL3Ywfwg2kc6zMnGrroGxz54G5EXVthRgKZSTFajzsNPQPDnGzo0huNKXDYbazWdoKg4YsSwRqgyhhTY4wZBJ4Gto3bZxvwn8blAJAqInOmeKzPeO4+tKF4ctpOMH2H69oZNbr+wFSVFaZxrrmH9t5Bq0MJCU1d/Tz080NU1Hf6/LN9kQhygEtjXte7t01ln6kcC4CI7BCRwyJyuLW1dUaBDo+MUpo/i4zEmBkdH2nKCtNo6u7nUrtOEDYV5bXtOGzCqvxUq0MJCZ6Sk7YTTE15rZM3K1sQxOef7YtEMFFU428hr7XPVI51bTTmcWNMqTGmNDMzc5ohuvzxlhJ++YfrZ3RsJPpg3iEtvk9JuXuho/honchwKq7LTSU2yqbVQ1NUXttOUoyDJX5Y6MgXiaAeyBvzOhe4PMV9pnKssoguJDJ1VwdHqKjvYo1WC01ZtMPGqnmz9PqaovIaJ6UFs7DbgrNEcAgoEZFCEYkG7gd2jttnJ/Db7t5Da4EuY0zjFI9VFtGFRKbu6MUOhkeNjh+YprLCdM40ddPVN2R1KEGt9coA1a29fuvo4nUiMMYMA48CrwJngGeMMadE5GERedi92y6gBqgCfgT80ccd621Mynd0IZGpKa9xuiYy1IWOpmVNYRrGuAbiqWvz90SGPqnMNMbswvXHfuy2H455boBHpnqsCh5jFxL59Kpci6MJXgdq21mWk0KSTmQ4LdfPSyXabuNgXTu3Lsm2OpygVV7rWuhomZ8WOoq4kcVqenQhkcn1D41w7FKnTlsyA7FRdlbmpeoEh5M46OeFjjQRqI+lC4lM7tilTgaHR3UhmhkqK0rj5OVuegaGrQ4lKHW4Fzry50BFTQRqUp6FRJq7dYKwiZTXtCMCN+hAxRkpK0xnZNRwWNsJJnTQ/e/izxkRNBGoSXnaCXT5yokdqHGyeHYyKXHaPjATq/JTcdiEch1YNqHymnZiHDauy/VP+wBoIlBTsGRuMkkxDv2iTmBgeISjFzu0WsgL8dEOrstN0XaCayivdbJq3ixiHP6byFATgZqU3SaUFszSL+oEPAsd6fgB75QVpVNR30XfoLYTjNXdP8Tpxm6/X1+aCNSUlBWlU93aS+uVAatDCSq60JFvrC1KZ3jUcORCh9WhBJXDnoWO/DxiXROBmhKdIGxiB2p0oSNfKM13TZ2g7VAfdqCmnWiHjevnpfr1PJoI1JQsy0khPtqu3UjH8Cx0pO0D3kuIcbA8J0XHq4xzoMbJ9QFY6EgTgZqSKLuN1fk6QdhYFfVdXB0a0YVofGRtUTrH6zu5OjhidShBobt/iJMNXQG50dBEoKZsbVE6Z5uv4OzRdgL4TXdaXejIN8qK0hgaMRy9qO0E8JuFjjQRqKCyrlgXHB+rvLadBdmJpOtCRz6h7QQfdqCmnWi7/9sHQBOBmobl7naC/fpFdbUP1LXrspQ+lBQbxbK5yVr96HagxsnKef5vHwBNBGoaouw2SgvS9I4NONHQRe/gyAelJOUba4vSOXapk/6hyG4nCGT7AGgiUNO0riidc809tEV4O8H+alcy1IZi3yorSmNwZDTi2wl+0z4QmOtLE4GaFs+FGenF9wM1ThZmJ2n7gI+VFqRhE1f9eCQrd7cPrJoXmIWOvEoEIpImIq+JyHn3z49ELSJ5IvKWiJwRkVMi8uUx731dRBpE5Jj7sdWbeJT/LctJISHaHtHVQ4PDoxyu69BqIT9Ijo1iWU4KB6oj9/qCwLYPgPclgseAN4wxJcAb7tfjDQN/boxZDKwFHhGRJWPe/1djzEr3Q1cqC3JRdhs3FKZFdIPx8fpOrg6N6EAyP1lXnM77lzoidjzBlf4hTgSwfQC8TwTbgCfcz58APjV+B2NMozHmqPv5FVxrE+d4eV5lobVF6VS19ETsvEMHqp2IBK7+NtKsK0pnaMRw+EJkVg8dCnD7AHifCLKNMY3g+oMPZH3cziJSAFwPlI/Z/KiIVIjITyeqWhpz7A4ROSwih1tbW70MW3nDc6cSqdNN7K9xsmh2MqnxOr+QP9xQkIbDJh80yEea/dVOoh2Bax+AKSQCEXldRE5O8Ng2nROJSCLwHPCnxphu9+YfAMXASqAR+Pa1jjfGPG6MKTXGlGZmZk7n1MrHls1NJjHGEZFf1IHhEY5c6GCdVgv5TUKMgxV5qeyLwOsLYF+1k9XzZgWsfQDAMdkOxphbr/WeiDSLyBxjTKOIzAFarrFfFK4k8KQx5vkxn908Zp8fAS9OJ3hlDYfdxg0FsyKyneD9i50MDI9qQ7GfrStK5wfvVNMzMExizKR/psJGR+8gpxu7+R+3Lgjoeb2tGtoJbHc/3w68MH4HERHgJ8AZY8y/jHtvzpiX9wAnvYxHBci64nRqWntp6oqsdYz3Vzuxic4v5G/ri13rGB+KsOlMymudGAPr5wf2RsPbRPBN4DYROQ/c5n6NiMwVEU8PoA3AF4FbJugm+k8ickJEKoDNwJ95GY8KkPXFGQDsr2mzOJLA2l/jZOncFF2f2M9W5c8i2m5jX3VkXV/7qp3ER9u5Ljc1oOf1qsxljHECWybYfhnY6n6+B5BrHP9Fb86vrLNkTjKp8VHsrXJyz/W5VocTEP1DIxy72Mn29flWhxL2YqPsXD8vNeKqH/dWtbGmMI0oe2DH+urIYjUjNpuwriidfVVtGGOsDicgDtd1MDgy+kFpSPnX+uIMTl3uprNv0OpQAqK5u5/q1l7WW9D+pIlAzdj6+Rlc7uqnztlndSgBsaeqDYdNtH0gQNYVp2OMa7rvSODphWfFjYYmAjVjG9x3LnurIqMed29VG6vmzSIhgnqxWGlFXgqxUbaI6aa8r7qNlLgoFs9JDvi5NRGoGSvMSGBOSmxENOh19g1y8nJXwHtzRLIYh50bCtLYEyE3GvuqnawtSsNum7BJ1a80EagZExHWF2ewv9rJ6Gh4txPsr3Z167txvrYPBNLGkgyqWnrCvpvypfY+6juuWtb+pIlAeWV9cTodfUOcaeqefOcQtre6jYRoOyvyUq0OJaJscCfecC8VeKpXrWgoBk0EykueL+q+qvCux91b5aSsKD3g3foi3eLZyaQnRId9O9R7VW1kJsUwPyvRkvPrVa28MjsllqLMBPaGcTtBQ+dVatt6P0h6KnBsNmH9/Az2hHE35ZFRw96qNjaWZOCaiCHwNBEor20ozuBgbTuDw6NWh+IXnrtRbR+wxsb5GbReGeBcc4/VofjFqctddPYNsbHEuutLE4Hy2o0lGfQNjoTtOrN7q9rISIxhQbY1xfZIt8H9B/K98+E5/fx75103GlaWODURKK+tL07HbhPePRd+X1RjDHurnGyYn25ZsT3S5aTGUZSRELbtBHvOt7FodhJZSbGWxaCJQHktKTaKVfNSeTcM79jONl+hrWeADTqthKVuLMmgPAyrH/sGhzl8oZ1NC6xdY0UTgfKJTSWZnGzoxtkTXstXeko5GxdoIrDShvmu6sf3w6z6sby2naERY3n7kyYC5ROeO5pw6+/9zrlWFmYnMSclzupQItq64nRsEn7Tmbx3ro1oh83y+as0ESifWJaTQmp8FO+eC58vat/gMIdqO7hpoS6NarXk2ChW5qXyzvnwub4A9lS1UlaYFtBlKSfiVSIQkTQReU1Ezrt/TrjasojUuRegOSYih6d7vAp+dptw4/wM3jvfGjb9vQ/UOBkcGeUmi+tvlctNC7KoqO8Mm+rHpq5+zjX3WF4tBN6XCB4D3jDGlABvuF9fy2ZjzEpjTOkMj1dBbtOCTFquDFDZdMXqUHzinbOtxEXZKS3Q+5NgcPPCTIz5TXfLUOepRt1YYv2NhreJYBvwhPv5E8CnAny8CiIbw6y/9zvnWllfnE6Mw9piu3JZnpNCekI0b59tsToUn3j7bAsZiTEsmp1kdSheJ4JsY0wjgPtn1jX2M8BuETkiIjtmcLwKAXNS4liQnRgW7QR1bb3UOfu0fSCI2GzCpgWZvHu+LeRnux0eGeXdc63cvDATmwXTTo83aSIQkddF5OQEj23TOM8GY8wq4C7gERHZNN1ARWSHiBwWkcOtreFxxxmONpZkcrCunauDI1aH4hXPmIhNQVBsV79x88JM2nsHqWjosjoUrxy92El3/zC3LAqOe99JE4Ex5lZjzLIJHi8AzSIyB8D9c8Iym3sxe4wxLcCvgDXut6Z0vPvYx40xpcaY0sxM/XIGq80LsxgcHg35bn7vnmslPz2egowEq0NRY2wqyUQE3qoM7eqhNytbcNiEGy2cX2gsb6uGdgLb3c+3Ay+M30FEEkQkyfMcuB04OdXjVWhZU5hGQrSdN0L4izowPMK+aqf2FgpCsxKiWZmXytshPp3J22dbKC2YRXJslNWhAN4ngm8Ct4nIeeA292tEZK6I7HLvkw3sEZHjwEHgJWPMKx93vApd0Q4bmxZk8mZlc8h2Iz1U20Hf4IhWCwWpm0O8G2lD51Uqm64ETbUQeJkIjDFOY8wWY0yJ+2e7e/tlY8xW9/MaY8wK92OpMeYfJjtehbZbFmXR3D3AqcuhuWrZ62eaiXHYdP2BIBXq3Ug91VqbF4ZJIlBqIpsXZSHiqgcNNcYYXj/TzMaSDOKitdtoMPJ0I30rRLuRvn22hdxZcZatRjYRTQTK5zISY1iZl8obZ5qtDmXazjZfob7jKrcuzrY6FHUNNptw08JM3j7byvBIaM1G2j80wt4qJ7csygqqac01ESi/2LIoi+P1XbRc6bc6lGl5/bQred2yOHiK7eqjbl+STdfVIQ7WhVZt8oEaJ1eHRoKqWgg0ESg/uWWR64767crQ6t3x2pkWVualWrpIiJrcpgWZxDhs7D4VWqXOtypbiHHYWFecbnUoH6KJQPnF4jlJzEmJ5Y3K0PmitnT3c/xSJ7ct0WqhYBcf7WBjSQavnQ6d3mmjo4ZXTzWzaUGm5bONjqeJQPmFiHDLoizeO99G/1BojDL2jH3Q9oHQcPuS2TR0Xg2Z3mkVDV00dfdz59LZVofyEZoIlN/cujibvsER9lWHRje/1083k5cWp4vUh4gti7OwCew+HRqlzldONuGwCVuCsP1JE4Hym/Xz00mKdbDrRJPVoUyqb3CYPVVtbFmUHVS9OdS1pSfGUJqfxu5TwX99GWN45WQj64rTSY2Ptjqcj9BEoPwmxmHntsXZ7D7VFPSLjr97ro2B4VFtHwgxty/NprLpCpfa+6wO5WOda+6hztnHHUFYLQSaCJSfbV0+h+7+4aCvHnrpRCNpCdGUWbx2rJoeT+IO9uqhV042IeLq9hqMNBEov7qxJIPEGAcvB3H10NXBEd4408ydy2bjsOtXIpTkpyewMDuJV4O8euiVU02snjeLrOTg7JasV73yq9goO1sWZ/Hq6SaGgnQU6JuVLfQNjvDJ5XOsDkXNwJ3LZnOorp2mruAcvHjR2ceZxm7uXBac1UKgiUAFwF3L5tDZN0R5TXCOAn3pxGUyEmMoKwquQT5qau5eORdj4MWKy1aHMiFPaSVY2wdAE4EKgJsXZhIfbeelE41Wh/IRvQPDvFnZwtbls7EHwZKBavqKMxNZlpPMr48HZyJ4seIyS+cmk5cWb3Uo16SJQPldbJSdWxZlsftUU9BNEvb6mWb6h0b55HVzrQ5FeeHuFXM5Xt9FbVuv1aF8SHVrD8fru7jn+hyrQ/lYmghUQGxdPgdn7yD7a5xWh/IhL1Y0kp0cQ2n+LKtDUV74rRVzESHoSgX//X4DNnElqmDmVSIQkTQReU1Ezrt/fuTbJCILReTYmEe3iPyp+72vi0jDmPe2ehOPCl63LMoiKdbB80cbrA7lA939Q7xztpWty+dg02qhkDYnJY4bCtJ44VhD0Mw9NDpq+NX7DWyYnxG0vYU8vC0RPAa8YYwpAd5wv/4QY8xZY8xKY8xKYDXQh2sBe49/9bxvjNk1/ngVHmKj7Ny9Yi4vn2zkSv+Q1eEAsPtUM4MjWi0ULratnEt1ay+nG4Nj7qEjFzuo77ga9NVC4H0i2AY84X7+BPCpSfbfAlQbYy54eV4Vgu5dnUv/0Ci7gqTR+JnDlyjMSGDVvFSrQ1E+sHXZHBw2Yeex4Kgeev5oA3FR9qDuLeThbSLINsY0Arh/Tjab0v3AL8Zte1REKkTkpxNVLXmIyA4ROSwih1tbQ2uOe+WyMi+V4swEfnmk3upQqGnt4WBtO58rzdO5hcLErIRoNi3IZOfxy4yMWls9NDA8wksVl7ljaTYJMQ5LY5mKSROBiLwuIicneGybzolEJBq4G3h2zOYfAMXASqAR+Pa1jjfGPG6MKTXGlGZmZk7n1CpIiAifWZ3LoboO6izu3fFfhy9htwmfWR38xXY1dfeuzqWxq593z1l7s/hWZQvd/cPcsyrX0jimatJEYIy51RizbILHC0CziMwBcP/8uNWk7wKOGmM+mBTEGNNsjBkxxowCPwLWePfrqGD36etzsQk8f9S6UsHQyCjPHWnglkVZuhJZmLltSTaZSTE8WW5t7fNzRxvISIxhQ5CtRHYt3lYN7QS2u59vB174mH0fYFy1kCeJuN0DnPQyHhXkZqfEcmNJJs8dbWDUouL7m5UttPUMcF9pniXnV/4TZbfxudJc3qxs4XLnVUtiaOi8yhtnmrl3dW7IzF3lbZTfBG4TkfPAbe7XiMhcEfmgB5CIxLvff37c8f8kIidEpALYDPyZl/GoEHDv6lwaOq+y16IZSZ85dImspBhuXqhVjOHo/hvmYYCnD12y5PxPHnCVRr6wdp4l558JrxKBMcZpjNlijClx/2x3b79sjNk6Zr8+Y0y6MaZr3PFfNMYsN8ZcZ4y529PwrMLbHUuzyUiM5md76wJ+7qauft462xJSd2tqevLS4rlpQSZPH7wY8IkO+4dGePrQJW5dnE3urOCdUmI8/SaogItx2PnC2nzerGyhqqUnoOd++tBFRg18TquFwtqDZfm0XBngjTMf12zpey9VNNLeO8j29QUBPa+3NBEoS3xhbT7RDhs/21sbsHNeHRzhP/dfYMuiLAoyEgJ2XhV4mxdmMicllqcOXgzYOY0xPLG/juLMBNaHSCOxhyYCZYmMxBjuWZnDc0fr6egdDMg5nzl8ifbeQR6+uTgg51PWcdht3H/DPN4918rZpisBOeexS51U1HexfX1ByI1N0USgLPPQjYX0D40G5K5teGSUH71Xw+r8WdxQoMtRRoLfXpdPQrSd775VFZDzPbGvjsQYB58OkbEDY2kiUJZZODuJjSUZPLGvzu+L2790opH6jqs8fJOWBiLFrIRovriugBcrLvu9LaqmtYdfVzRy3w15JIbASOLxNBEoSz10YyEtVwb41fv+G2BmjOGH79RQkpXIlkWTzYKiwsnvbSwk1mHn+34uFfzr6+eJtttC9kZDE4Gy1M0LMlmRl8q/vHaOq4MjfjnHO+daOdPYzY5NRTrddITJSIzhwbJ5vHD8st+mNTnT2M2vj1/mSxsKyEyK8cs5/E0TgbKUiPDXWxfT3D3AT/bU+Pzzh0dG+ebLleSkxrFtpc4rFIl2bCrCYRO+/7Z/SgXf3n2OpFgHf7ApNEsDoIlABYE1hWncviSbH7xdTeuVAZ9+9lMHL1LZdIW//sRioh16uUeirORYHlgzj+ePNnC+2bc9iN6/2MHrZ5rZsbGIlPgon352IOk3QwWFr961iP7hUb7zxjmffWZ77yDf3n2O9cXp3LUs+OeEV/7z6C3zSYx18LXnT/hsjitjDN969SxpCdF86cZCn3ymVTQRqKBQnJnI59fM4xcHL1HV4pu7tm+9epaegWG+fvfSkOvXrXwrIzGGv966mMMXOvjFId90V3760CX2VTv5s1tLQrKn0FiaCFTQ+PKtJSRE2/kfzxxnYNi7huMT9V08fegi29cVsCA7yUcRqlB27+pc1hen881dlTR393v1WRedffz9i6fZMD+dB8vyfRShdTQRqKCRkRjDtz67gor6Lr6xq3LGn9PdP8Sf/tf7pCfE8Ke3lfgwQhXKRIR/vGc5gyOjfH3nqRl/zsio4c+fPYbdJnzr3hVh0RNNE4EKKncsnc1DGwr5+b46Xjk5/cloR0YNf/zU+1xw9vHdz19PcmzoNuAp3yvISOBPtpTw8skmfvzezHqp/WRPDYfqOvjbu5cyNzXOxxFaQxOBCjqP3bWIFbkp/OUvK6bd9/sbu87wzrlW/m7bMtYWhdbEXyowHr6pmK3LZ/O/XzrDc9NcP3vn8cv8n1fOcufS2dxzffh0R9ZEoIJOtMPGdz+/CpsI9/5wP+9f7Jj0GGMMP99by4/31LJ9XT6fLwudRUFUYNltwr/et5IN89P5ynMVvH66efKDcE1a+OWn36c0fxb//LkVYdUBwatEICKfFZFTIjIqIqUfs9+dInJWRKpE5LEx29NE5DUROe/+OcubeFT4yEuL59mH1xEXbeO+xw/wwrGGa+7b2TfII08d5eu/Ps3mhZn8r08uCWCkKhTFOOz8xxdLWTY3mUeeOsqP3q255nxXo6OGn+6p5Su/rODG+Rn8/EtrQr6X0HhizMz71IrIYmAU+A/gL4wxhyfYxw6cw7VUZT1wCHjAGHNaRP4JaDfGfNOdIGYZY7462XlLS0vN4cMfOZUKQ+29gzz8/x7hYF07W5fP5hPL53Lzwkxio+zUtvXy/sUOvr37HG09A/z57QvZsakIexg03qnAaO8d5C+ePc6blS0UZSTwV1sXsyp/FsmxDoZHDc8fbeDH79VQ09bLrYuz+d6D1xPjsFsd9oyJyBFjzEdu2r1KBGM+/G2unQjWAV83xtzhfv01AGPMN0TkLHCzMabRvZD928aYhZOdTxNBZBkcHuXbu8/yyyP1OHsHiXHYsNuEPvfcREWZCXznvutZnpticaQqVL11toW///Vpasa0STlswvCoYXlOCr+/qYhPLJ8T8jcZ10oEgSjf5ABjV5GuB8rcz7M96xS7k8E1p4YUkR3ADoB587T+N5JEO2x8betivnLnIg7VtfPa6WZGRg3LclJYlpPM/MxEXX9YeWXzwiw2FGfw2ulmWq7003V1iKuDI9y8MIu1RWlh1R4wkUkTgYi8Dkw0Pv+vjTEvTOEcE/0LTrsYYox5HHgcXCWC6R6vQp/dJqwtStfeQMovoh02PnHdHKvDsMSkicAYc6uX56gHxq4Ungtcdj9vFpE5Y6qGArvStFJKqYB0Hz0ElIhIoYhEA/cDO93v7QS2u59vB6ZSwlBKKeVD3nYfvUdE6oF1wEsi8qp7+1wR2QVgjBkGHgVeBc4AzxhjPOO7vwncJiLncfUq+qY38SillJo+n/QaCjTtNaSUUtN3rV5D2tVCKaUinCYCpZSKcJoIlFIqwmkiUEqpCBeSjcUi0gpcmOHhGUCbD8OxQqj/Dhq/9UL9dwj1+MGa3yHfGJM5fmNIJgJviMjhiVrNQ0mo/w4av/VC/XcI9fghuH4HrRpSSqkIp4lAKaUiXCQmgsetDsAHQv130PitF+q/Q6jHD0H0O0RcG4FSSqkPi8QSgVJKqTE0ESilVISLqEQgIneKyFkRqXKvkRwyRCRPRN4SkTMickpEvmx1TDMhInYReV9EXrQ6lpkQkVQR+aWIVLr/L9ZZHdN0iMifua+fkyLyCxGJtTqmyYjIT0WkRUROjtmWJiKvich5989ZVsY4mWv8Dt9yX0cVIvIrEUm1Kr6ISQQiYge+B9wFLAEeEJEl1kY1LcPAnxtjFgNrgUdCLH6PL+OajjxUfQd4xRizCFhBCP0uIpID/AlQaoxZBthxrQ8S7H4O3Dlu22PAG8aYEuAN9+tg9nM++ju8BiwzxlwHnAO+FuigPCImEQBrgCpjTI0xZhB4GthmcUxTZoxpNMYcdT+/gusPUI61UU2PiOQCnwB+bHUsMyEiycAm4CcAxphBY0ynpUFNnwOIExEHEM9vVgsMWsaYd4H2cZu3AU+4nz8BfCqQMU3XRL+DMWa3e70WgAO4Vm+0RCQlghzg0pjX9YTYH1IPESkArgfKLQ5luv4N+AowanEcM1UEtAI/c1dv/VhEEqwOaqqMMQ3APwMXgUagyxiz29qoZizbGNMIrpskIMvieLz1EPCyVSePpEQgE2wLub6zIpIIPAf8qTGm2+p4pkpEPgm0GGOOWB2LFxzAKuAHxpjrgV6Cv0riA+569G1AITAXSBCRL1gblRKRv8ZV9fukVTFEUiKoB/LGvM4lBIrFY4lIFK4k8KQx5nmr45mmDcDdIlKHq1ruFhH5/6wNadrqgXpjjKck9ktciSFU3ArUGmNajTFDwPPAeotjmqlmEZkD4P7ZYnE8MyIi24FPAg8aCwd1RVIiOASUiEihiETjaiTbaXFMUyYigqtu+owx5l+sjme6jDFfM8bkGmMKcP3bv2mMCam7UWNME3BJRBa6N20BTlsY0nRdBNaKSLz7etpCCDV2j7MT2O5+vh14wcJYZkRE7gS+CtxtjOmzMpaISQTuRplHgVdxXfzPGGNOWRvVtGwAvojrTvqY+7HV6qAi0B8DT4pIBbAS+Edrw5k6d0nml8BR4ASu73/QTHNwLSLyC2A/sFBE6kXkd4FvAreJyHngNvfroHWN3+G7QBLwmvv7/EPL4tMpJpRSKrJFTIlAKaXUxDQRKKVUhNNEoJRSEU4TgVJKRThNBEopFeE0ESilVITTRKCUUhHu/wfBfkNqQlRyxgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "ax.plot(x,y)" ] }, { "cell_type": "markdown", "id": "ed4fe7ec", "metadata": {}, "source": [ "Přidáme popisky os pomocí `set_xlabel()`, `set_ylabel()` a název grafu pomocí `set_title()`:" ] }, { "cell_type": "code", "execution_count": 39, "id": "9fd2fa6f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, 'Graf funkce sin(x)')" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEWCAYAAABIVsEJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABCE0lEQVR4nO3deXxc5XX4/8+Z0b5bi3fZlmR5Nza2sLxgs5jVJDgkhEAIoaEppYE2bdMmJOm3vzRpG9o0adNvFkISEvIrSyGQ4IABg1m9yRveVy3GlmxrtSTLsvbz/WNmiCxka5uZO8t5v17z0syde+eesWfm3Hue5z6PqCrGGGPMULmcDsAYY0x4sgRijDFmWCyBGGOMGRZLIMYYY4bFEogxxphhsQRijDFmWCyBGOMlIreJyAkRaRGRy/t5fpmIHPU+/4kR7utbIvI/I3mNEez7bhFZN4T1c0TksIgkDGLdH4jIAyOL0IQLSyAmLInInSJSIiLnRKTGe/9LIiIjeNn/AB5S1RRVfb+f578N/Mj7/O9HsB9HqeqTqnrDEDZ5GPiVqrYNYt3vAd8UkbjhRWfCiSUQE3ZE5CvAD/H8WI0FxgAPAMuAfn+4RMQ9iJeeDOwfwfMRR0TigXuBQZ0tqeop4BBwayDjMqHBEogJKyKSjudM4Euq+ltVPase76vq3ara7l3v1yLyUxFZKyLngGtE5BYReV9Emr2lqm95140XkRbADewWkbJ+9lsG5AN/8Jaw4kXkmIhc12udD8tSIjJFRFRE7hWR4yJSJyLfvMh7ihWRp0XkeRGJExG3iHxDRMpE5KyI7BCRXO+6M0TkdRFp8JaV7rjEv9WfiEi59zUqROTuXss39FpPReQBb3nujIj8uNeZXDHQqKqV3nUzRaRSRD7ufZwiIqUi8vleu34buOWi/4kmYlgCMeFmCRAPvDiIdT8L/AuQCmwAzgGfBzLw/MD9hYh8QlXbVTXFu808VS3o+0LeZceBj3tLWO2DjPdKYDqwEvhHEZnZ+0kRSQR+D7QDd6hqB/C3wF3AKiANuA9oFZFk4HXgKWC0d52fiMjsvjv1rvvfwM2qmgosBXZdIs6PAVcA84A7gBu9y+cCh3v9OzR44/m5iIwG/hPYpaq/6fVaB72vYyKcJRATbrKBOlXt8i0QkU0i0igi50VkRa91X1TVjarao6ptqvq2qu71Pt4DPA1cFeB4/0lVz6vqbmA3F/6wpgGvAmXAF1S127v8i8A/qOph79nVblWtx/Mjf0xVf6WqXaq6E3geuP0i++4B5ohIoqqeUtVLld8eUdVGVT0OvAXM9y7PAM72XlFV1wHPAevxJOI/7/NaZ73bmQhnCcSEm3ogW0RifAtUdamqZnif6/2ZPtF7QxEpFpG3RKRWRJrwtJtkBzje073utwIpvR4vBi7D8+Pde1TTXDxJpa/JQLE3WTaKSCNwN552oAuo6jngM3je4ykReVlEZgwjzjN4zuD6egyYg6dxvb7Pc6lA4yX2ZSKEJRATbjbjKfesHsS6fYeafgpYA+SqajrwKDCSXlvngKRejz/yQz6AdcB3gfUiMqbX8hPAR8po3uXvqGpGr1uKqv5Ffy+uqq+p6vXAODwN2z8fYnwAe4BpvRd4OyT8DPgNnjLg1D7bzMRztmUinCUQE1ZUtRH4Jzy1/9u9jbguEZkPJA+weSrQoKptIrIITxvJSOwC7vQ2ghdx8VLSRanqv+NJbOtFxHc29AvgOyJSKB6XiUgW8BIwTUTu8e4zVkSu6NuuAiAiY0TkVm9bSDvQAnT3XW8QtgIZIjKh17JveP/eh6fr82/69HK7CnhlGPsyYcYSiAk73h/dvwW+CtQA1XiOiL8GbLrEpl8Cvi0iZ4F/BJ4dYSj/B8+Zwhk8Se2p4byIqn4HT0P6GyKSCfzAG9s6oBn4JZCoqmeBG4A7gZN4yk7/hqdTQV8u4Cve9Rrw/Kh/aRixdQC/Bj4HICIL8fzbf97bZvNveM70HvY+Pw6Y5X0/JsKJTShljLkUEckB3gMuV9XzA6z7faBMVX8SlOCMoyyBGGOMGRYrYRljjBkWSyDGGGOGxRKIMcaYYYkZeJXIkZ2drVOmTHE6DGOMCSs7duyoU9WcvsujKoFMmTKF7du3Ox2GMcaEFRH5oL/lVsIyxhgzLJZAjDHGDIslEGOMMcNiCcQYY8ywWAIxxhgzLI4mEBF5XERqRGTfRZ4XEflv75SZe0RkQa/nbvJO6VkqIg8HL2pjjDHg/BnIr4GbLvH8zUCh93Y/8FP4cD6CH3ufnwXcJSKzAhqpMcaYCzh6HYiqvisiUy6xymrgN97Z2raISIZ3uOgpQKmqlgOIyDPedQ8EOOSQoKrsPN5IWU0LaYkxpCXGUpCTwpi0BKdDMxGivqWd/SebOXS6mclZyVw1LYeEWPfAG5qoEuoXEk7gwmlJK73L+lte3N8LiMj9eM5emDRpUmCiDJLuHmXd/tM89l457x9vvOC5WLdw35V5/OW1haTEh/p/qwlVJeX1fON3eymrPXfB8sRYN9fMyOHPludz+aRRDkVnQk2o/9L0N92oXmL5RxeqPoZn/maKiorCduz6xtYO/uRX29h1opFJmUl8e/Vsrp42mrPtnTSd7+SFnVX87J1yXthZxT/cMpPV8ycM/KLGeHV29/BfbxzhJ2+XMSkziW+smsGcCelMH5PKodNneWXfKV7Ze5o3DtTwr5+cy+0LJzodsgkBoZ5AKoHcXo8n4plhLe4iyyNSXUs7n/tFCeW15/j+p+fxicsn4HZdmEOXFmRzz+LJ/H9r9vPlZ3ZxvqObOxeF9xmXCY7G1g7u/dU2dp9o5DNFufzjx2eR3OssdtnUeJZNzebvbpjOl57cyd89t5vSmha+euN0XK6RTClvwp3TjegDWQN83tsbazHQpKqngG1AoYjkiUgcnik+1zgZaKBUN7fxmZ9t5lj9OX75J0V8auHEjyQPn3m5GTz750u4enoO3/jdXl7ddyrI0Zpw09Xdw0NPvc+Bk0385O4F/Nvtl12QPHrLSIrjifsW8dniSTz6Thlfe34PNiFddHO6G+/TwGZguohUisifisgDIvKAd5W1QDlQCvwc75zOqtoFPAS8BhwEnlXV/UF/AwHW1tnN535RwummNp74wiKWF35kMMyPiItx8ZO7FzA/N4O/enoXm0rrghCpCVf//PJBNpTW8a+3zWXV3HEDrh/rdvEvn5jDQ9dM5bkdlTy3vTIIUZpQFVVT2hYVFWk4jcb77T8c4PGNFfzmvkWsmDZw8uitsbWDz/xsC1WN53ntb1YwISMxQFGacPVUyXG+8bu9fPHKPP7hY0PrBd/do3z+8RK2HzvDiw8tY8bYtABFaUKBiOxQ1aK+y0O9hBW1NpXV8fjGCu5dMnnIyQM85YZf3FtEd4/yf36/z0oN5gL7Tzbxjy/u46ppOXx91cwhb+92Cf/1mctJS4zlwSd3cq69KwBRmlBnCSQENbd18vfP7SE/O5mHbx76l9snNzOJr9wwjTcP1fDyXmsPMR6qyrfW7CctMZYf3jn/om1qA8lJjeeHd86nou4c//SHiKsgm0GwBBKCvvOHA5xqOs/375hHYtzILt76k6VTmDshnW+tOUBTa6efIjTh7MVdJ9l27AxfvXE6GUlxI3qtpQXZ/NnyfJ7dXsm+qiY/RWjChSWQELOvqonndlRy/4oCv1ywFeN28d1PzuVMawfffeWgHyI04aylvYt/XXuQyyamc0dR7sAbDMKD105lVFIs//LyQSuVRhlLICHmB68fIT0xli9dU+C315wzIZ0vXpnHM9tO2FFilPu/649Sc7adf7p1tt+u4UhLiOXLKwvZXF7PW4dr/PKaJjxYAgkhOz5o4M1DNfz5VfmkJcT69bUfvHYqqQkx/OjNUr++rgkfx+rO8fjGCm5fONHvw5F8tngyednJfHftIbq6e/z62iZ0WQIJEarK9147THZKPH+ydIrfXz8tIZYvLMvj1f2nOXS62e+vb0Lfo++UISJ89cbpfn/tuBgXX7tpOkdrWnhuh10bEi0sgYSIjaX1bClv4MFrCkiKC8wIM/ctm0JynNvOQqJQTXMbL+ys4tMLJzI6QKM23zh7LEWTR/HDN47SaWchUcESSAhQVf5j3WHGpyfw2eLAjV+VkRTHvUun8PLeU5TWnA3Yfkzo+eXGCrp6erh/RX7A9iEifOmaAk43t7HWuo1HBUsgIWDHB2fYdaKRv7hmKvExgZ1z4U+vzCMhxs2P3yoL6H5M6Ghu6+SpLce5ee44JmclB3RfV08bTX5OMr/cUGE9sqKAJZAQ8MTmD0hNiOFTCwI/BHtWSjz3LJnMi7uqOF7fGvD9Gec9ueU4Z9u7+Iur/Nez72JcLuG+ZXnsqWxi27EzAd+fcZYlEIfVNLfxyt5T3FGUG7C2j77uW5aHiPDU1uNB2Z9xTltnN49vrGB5YTZzJqQHZZ+fWjCRjKRYfrmhPCj7M86xBOKwp7Yep6tHuWfx5KDtc2x6AitnjOa57Sfo6LLGzkj2h90nqT3bzp+vCPzZh09inJu7iyex7kA1H9SfG3gDE7YsgTioo6uHJ0uOc/X0HKZkB7Y23dfdiydTf66D1/afDup+TXD977YT5Ocks2xqVlD3+/klU4hxCb/aeCyo+zXBZQnEQa/tP03t2XbuDcB1HwNZPjWb3MxEniz5IOj7NsFRWtPC9g/O8JmiXESCO3PgmLQEPnbZeH67o5LzHd1B3bcJHksgDvrN5mNMzkriqkFMFOVvLpdw16JJbClvoLSmJej7N4H37PYTxLiETy5wZv7yz1yRS0t7l53lRjCnZyS8SUQOi0ipiDzcz/N/LyK7vLd9ItItIpne546JyF7vc+EzS5RXac1Zth07w+eKJzs2r/SnF+YS4xKeKrHG9EjT0dXDCzsrWTlzNDmp8Y7EsGhKJrmZifzWrkyPWI4lEBFxAz8GbgZmAXeJyAXToqnq91R1vqrOB74OvKOqDb1Wucb7/Edmygp1L+yswu0SPnF54LvuXkxOajw3zhnL8zsraeu0MkMkefNQNXUtHdx5ReAuTB2IyyV8asFENpbVUdV43rE4TOA4eQayCChV1XJV7QCeAVZfYv27gKeDElmA9fQoL+46yfLCbMeODn3uXjSJpvOdVmaIMP+77QRj0xKGNZulP31qwURU4Xc77SwkEjmZQCYAJ3o9rvQu+wgRSQJuAp7vtViBdSKyQ0Tuv9hOROR+EdkuIttra2v9EPbIbT3WQFXjeW5z8OzDZ3F+FmPTEvjD7pNOh2L85FTTed45UsuniyYOe7ZBf8nNTKI4L5Pnd1bZlekRyMkE0t8n+2KfsI8DG/uUr5ap6gI8JbAHRWRFfxuq6mOqWqSqRTk5zh6N+fz+/SqS49zcMGus06HgcgkfnzeOd47U0tja4XQ4xg9e2FlFj3rauELB7QsnUlF3jp3H7cr0SONkAqkEen/CJwIXOwy+kz7lK1U96f1bA/wOT0ks5LV1dvPy3lPcOGfsiKer9Zdb502gs1t5ZZ+VsSLBS3tOsWBSBpOykpwOBYBVc8eRFOe2xvQI5GQC2QYUikieiMThSRJr+q4kIunAVcCLvZYli0iq7z5wA7AvKFGP0JuHajjb1sUnL3ema2V/5kxIIz87mTW7rIwV7spqWzh4qplbLhvvdCgfSo6P4eY543hp9ynrrBFhHEsgqtoFPAS8BhwEnlXV/SLygIg80GvV24B1qtp7TIQxwAYR2Q1sBV5W1VeDFftIvLCzijFp8SwpCO6VwZciInx83ni2VNRzuqnN6XDMCLy85xQicMvccU6HcoFb54/nbHsXG47WOR2K8SNHrwNR1bWqOk1VC1T1X7zLHlXVR3ut82tVvbPPduWqOs97m+3bNtQ1tnbw9uEaVs+f4HjjZl+3zh+PKry0x85CwtlLe05yxeRMxqYHZtKo4VpakEV6Yixr99k8IZHErkQPotcPVNPVo3zsstA6OgQoyElh7oR01lhvrLB1pPosR6pb+Ni80Pt8xbpdXD9rDK8fqLYBPCOIJZAgem3/aSZkJDI3SMNqD9Wt88azp7KJijobQTUcvbTnFC6Bm+Y437uvP6vmjuVsWxcby6yMFSksgQRJS3sX7x6t48bZY4M+sN1g+Y5cX7EyQ9hRVV7ac5LivCxGp4ZW+cpn2dRsUhNiWLvHPl+RwhJIkLx9uIaOrp6QPToEGJeeyLyJ6azbX+10KGaIDp0+S3ntuZAsX/nEx7i5fuYY1h2oprPbyliRwBJIkLy67zTZKXEsnDzK6VAu6YbZY9l1opHqZuuNFU7W7vWWr2aH7gEKwM1zx9F0vpPNZfVOh2L8wBJIELR1dvPWoRqunzU25Hpf9XX9rDEAvHHQzkLCyesHqrliSiZZKc6OrTaQ5YXZJMe5rUwaISyBBMHG0jrOdXSHdPnKp3B0ClOykqyMFUZONLRy6PTZD5N/KEuIdbNy5hhe219Nl5Wxwp4lkCB4dd9pUhNiWJIfOhcPXoyIcMPssWwqq+NsW6fT4ZhBWO89W1w5M/QTCHh6iTWc62Dn8UanQzEjZAkkwLq6e3j9YDXXzRxDXEx4/HPfMGsMnd3K24dDY/Ric2lvHKxh6ugU8rKTnQ5lUJYXZhPrFtYfsrPccBcev2hhbNuxMzS2dnLj7PA4OgS4fNIoslPiWHfAvuChrrmtky3l9VwXJmcfAKkJsRTnZfHmwRqnQzEjZAkkwN46XEOsW1juwLznw+V2CStnjOGtQzW0d9ngd6HsncO1dPUo188a7XQoQ3LtjNEcrWnheH2r06GYEbAEEmBvHqqhOC+L5PgYp0MZkhtmj6GlvYst5Q0Dr2wc88bBarKS45ifG9rdw/taOdOT8KyMFd4sgQTQiYZWSmtauGZGeB0dgueq4YRYF28dsjJDqOrs7uGtQzVcO2N0yHcP72tyVjIFOcm8aZ+vsGYJJIDeOuz5clwzPXzKVz4JsW6W5Gfx9mH7goeqbccaaG7rCpveV32tnDmGLeX1tLR3OR2KGSZLIAH05qEapmQlkZ+T4nQow3L19NEcq2+1wRVD1PqDNcTFuFhemO10KMNy7YzRdHYr7x2x3n7hytEEIiI3ichhESkVkYf7ef5qEWkSkV3e2z8Odlunne/oZnNZfViWr3yu9p452VlIaHrnSC3FeZlh177ms3DyKNISYlhvZayw5VgCERE38GPgZmAWcJeIzOpn1fdUdb739u0hbuuYzeV1tHf1cM308E0gk7OSyc9OtutBQlDlGU/72lXTwq886hPrdnHV9NG8daiGnh51OhwzDE6egSwCSr2zC3YAzwCrg7BtULx5qIakODfF+ZlOhzIiV03PYUt5vc1lHWLePeKZU+PqMGxf623ljNHUn+tgT1WT06GYYXAygUwATvR6XOld1tcSEdktIq+IyOwhbusIVeWtQ7Usm5pNfIzb6XBG5Orpo2nv6mFzuY2eGkreOVLDhIxECsK0fc3nSm/7jbWDhCcnE0h//Q77nsfuBCar6jzg/wK/H8K2nhVF7heR7SKyvbY2OB/SozUtVDWeD+vylU9xXiYJsS7esTJWyOjs7mFjaT0rpmWH7ORkg5WdEs+cCWm8d9RmKQxHTiaQSiC31+OJwAUTcqtqs6q2eO+vBWJFJHsw2/Z6jcdUtUhVi3JygnO6/673aCrcywtg3XlD0c4PztDS3hXW7R+9LS/MYefxMzZ4ZxhyMoFsAwpFJE9E4oA7gTW9VxCRseI9xBKRRXjirR/Mtk5692gdBTnJjM9IdDoUv7DuvKHlnSO1uF3C0qnh2X23rxWFOXT1qE0yFYYcSyCq2gU8BLwGHASeVdX9IvKAiDzgXe12YJ+I7Ab+G7hTPfrdNvjv4qPaOrvZWlEfVmNfDcRXirOzkNDw7tFaFk4aRVpCrNOh+MXCyaNIinPz7lErk4YbRzuQe8tSa/sse7TX/R8BPxrstqFgxwdnaOvsCduLu/ozKSuJKVlJbCyt4wvL8pwOJ6rVnm1nX1Uzf3/jdKdD8Zu4GBdL8rOsHSQM2ZXofvbe0TpiXEJxGEweNRTLpmazpbyBTptFzlHveY/SI6X9w2fFtBw+qG/lg3ork4YTSyB+tqG0lgWTR5ESplcHX8zywmxa2rvYdaLR6VCi2rtHaslKjmPWuDSnQ/GrFd6E+K515w0rlkD8qL7FU15YHiGNm70tyc/GJbDBygyOUVU2lNazbGo2rjAbfXcgU7KSyM1M5F37fIUVSyB+tNHbi2R5hJUXANKTYpk7MYMNpfYFd8qR6hbqWtq5MgIPUEQ8k65tLqu3MmkYsQTiR+8dqSU9MZa5E9KdDiUgrpyaxa4TjdZf3yEbvcl7WQR10OhtRWGOlUnDjCUQP/GUF+pYNjUr7Cb3GaxlU7Pp7lGbpdAhG0vrmJKVxIQIub6oryX5Wbjkj4nShD5LIH5SVtvCqaY2rpwaeeUrn4WTR5EQ67IvuAM6u3vYUu5p/4hU6UmxzJmQzqZSu6AwXFgC8RNf43IkXf/RV3yMm0V5WR92JTXBs6eykXMd3RHZ/tHb0oJs3j9xhtYOm6UwHFgC8ZNNZfXkZiaSm5nkdCgBtXxqNmW15zjVdN7pUKLKhqP1iMCSgsi6vqivZVOz6OxWtlZYmTQcWALxA0+7QD1L8yP76BD4sIRi3XmDa2NpHXPGp5ORFOd0KAFVNDmTOLfLxsUKE5ZA/ODAyWaa27pYOjWyjw4BZoxNJTslztpBguhcexfvnzgT0e0fPolxbi6flMHGMvt8hQNLIH6wyfthj/TyAoDLO0zL5vJ6VG0a0mDYeqyBzm5lWRQcoIDnLHf/yWYaWzucDsUMwBKIH2wqq6dwdAqjUxOcDiUolhZkUd3cbsO7B8nGo3XExbi4Ykp4T488WMumZqGKlbHCgCWQEero6mHbsQaWRsHZh88S70CRNs1tcGwqq2fhpFEkxIb39MiDddnEDJLj3FbGCgOWQEZoT2UjrR3dLCmI/Pq0T152MmPTEthkR4gB19jawcHTzVFRHvWJdbtYlJdp14OEAUsgI7Sx1NO9cnF+dJQXwDNu0ZKCLEqsHSTgtpQ3oBod7Wu9LZuaTXmddRcPdY4mEBG5SUQOi0ipiDzcz/N3i8ge722TiMzr9dwxEdkrIrtEZHtwI/+jTWV1zB6fFvHdK/taUpBFXUsHR2tanA4lom0prycx1s28iRlOhxJUvoRp7SChzbEEIiJu4MfAzcAs4C4RmdVntQrgKlW9DPgO8Fif569R1fmqWhTwgPtxvqOb9483sjSKylc+vnaQTdadN6C2lNdTNGUUcTHRVSyYOTaN9MRYtlg7W0hz8lO5CChV1XJV7QCeAVb3XkFVN6nqGe/DLcDEIMd4STs+OENHd0/UlRcAcjOTmDgq0RrSA6i+pZ1Dp8+yOMJmtxwMl0sozsu0gTtDnJMJZAJwotfjSu+yi/lT4JVejxVYJyI7ROT+i20kIveLyHYR2V5b698xnDaX1+F2CYuipHtlX0sLsthS3kBPj7WDBEKJdziPaEwg4CljHW9oparR2kFClZMJpL8xz/v9JRKRa/AkkK/1WrxMVRfgKYE9KCIr+ttWVR9T1SJVLcrJ8e9IuVvKG7hsYjrJETZ97WAtKcii6XwnB041Ox1KRNpcVk9SnJvLJkbm/DID8SXOLdYOErKcTCCVQG6vxxOBk31XEpHLgF8Aq1X1w0+Sqp70/q0BfoenJBY0rR1d7D7RGLVHh+CZ5hawOnWAbC6v54opmcS6o6v9w2f6mFRGJVk7SChz8pO5DSgUkTwRiQPuBNb0XkFEJgEvAPeo6pFey5NFJNV3H7gB2Be0yPG0f3T1aFQnkLHpCeRnJ1tPmQCoPdtOaU1LVLav+XjaQbKsnS2EOZZAVLULeAh4DTgIPKuq+0XkARF5wLvaPwJZwE/6dNcdA2wQkd3AVuBlVX01mPFvKa/H7RKKJo8K5m5DTnF+FluPNdBt7SB+5TvqXhLFByjgub6q8sx5TjS0Oh2K6YejxXtVXQus7bPs0V73vwh8sZ/tyoF5fZcHU0mUt3/4LM7P5Omtxzl4qpk5EToXvBM2l9eTGh/D7PFpTofiKN8IDyUVDRE/1044is7i6gi1dnSxuzK62z98ivO8DZ1WZvCrLeX1XJGXSUyUtn/4FI5OITM5zsqkISq6P53DtPODRjq7o7v9w2dsegJ52cnWX9+PaprbKK89F1XD41zMH68HsQQSiiyBDIO1f1yoOC+TrRX11g7iJ77rP3xnd9FuSUEWVY3WDhKKLIEMw5byemv/6GVxfhbNbV0cOm3Xg/hDSUU9Kdb+8aHFNn1AyLIEMkTW/vFRxd5Si5Wx/KOkvIGiKaOivv3Dx9cOUmKfr5Bjn9AhsvaPjxqXnsjkrCRK7AhxxOpa2jla02Llq15EPMMFlVTY5yvUWAIZIl/7x0Jr/7hAcV4mW4/ZuFgjtdXX/mEN6Bco9l4PYuNihRZLIENUUlHPnAnppFj7xwUW52fR2NrJ4eqzTocS1krKPeNfzbVrai7gOyOzs9zQMqgEIiIuEblcRG4RkWtFZEygAwtFbZ3d7D7RxOI8Ozrsqzjfrgfxh5KKBhZOHhW1419dzIyxqaQnxlo7SIi55KdURApE5DGgFHgEuAv4EvC6iGwRkS+ISNR80nce98z/YeWFj5qQkUhuZqIlkBFoONcRtfN/DMTlEq6wdpCQM9CP/z8D/wMUqOqNqvo5Vb3dO0PgrUA6cE+ggwwVJeUNuASKonT+j4EU52WxtcLaQYbrw/YPO8Pt1+L8TI7Vt3K6qc3pUIzXJROIqt6lqu+q6kd+EVS1RlX/S1WfCFx4oaWkop5Z49NIS4h1OpSQVJyXyZnWTkprbZ704SipqCch1sVlUTb/+WD5zszsLCR0DLYN5DsiEtPrcZqI/CpwYYWe9i7P/OfWvfLiPvyCWxlrWErKG1gwKfrmPx+smePSSE2IseuNQshgP6kxQImIXCYiN+CZy2NH4MIKPXsqm2jv6mGRlRcuauKoRMalJ7Clwr7gQ9XU2snB0812gHIJbmsHCTmD6ouqql8XkfVACXAGWKGqpQGNLMT4jqqjdf7zwRDxDHy3obQeVUWkv1mLTX+2HWtA1a7/GEhxXiZvHqqh5mwbo1MTnA4n6g22hLUC+CHwbeBt4EciMj6AcYWckooGZoxNZVRynNOhhLTi/CzqWtoprzvndChhpaSinrgYF/NzM5wOJaT5uotvtbPckDDYEtZ/AJ9W1e+q6meBx4A3R7pzEblJRA6LSKmIPNzP8yIi/+19fo+ILBjstv7U2d3Djg/OWO+YQfD9G1l//aEpqWhgfm4GCbFup0MJaXPGp5Ec57bPV4gYbAJZoqoHfA9U9QVg2Uh2LCJu4MfAzcAs4C4RmdVntZuBQu/tfuCnQ9jWb/ZWNdHa0f3h0Y+5uLzsZHJS461OPQQt7V3sq2qyA5RBiHG7WGjtICFjoAsJPyciLlXt7vucqtZ7LzS8cpj7XgSUqmq5qnYAzwCr+6yzGviNemwBMkRk3CC39Rvf0Y41oA/M1w5SUt5AP72/TT+2H2ugR23+j8EqzsvkSHULDec6nA4lLJxuauO+X29jT2Wj3197oDOQLOB9EXlcRB4UkTtE5PMi8m0ReQf4d6B6mPueAJzo9bjSu2ww6wxmWwBE5H4R2S4i22tra4cVaFd3D0WTR5GdEj+s7aNNcV4mp5vbONFgA98NRklFAzEuYcHkDKdDCQu+MzVrBxmckop63jxUg+D/Ti0DXUj4Q2AB8DSQA6z0Pq4C7lHVT6nq0WHuu7930/eQ9WLrDGZbz0LVx1S1SFWLcnJyhhiix1+uLOS3f7F0WNtGow/HxbIyw6CUeCcoS4qzAToH47KJGSTEuqyMNUglFQ2kxscwKwATlA34ifWWr1733vypEsjt9XgicHKQ68QNYlvjkN4TAN1RlDvwBlHsfEc3eyqb+OLyfKdDCRtxMS4WTBplDemDVFJeT9GUUbhdQT4D8RGRHBH5hog85i1nPS4ij49w39uAQhHJE5E44E5gTZ911gCf9/bGWgw0qeqpQW5rHGITAA3ezuNn6OpRu/5jiIrzsjh4upmm1k6nQwlptWfbKas9F7AOQIM9Z34ReA94A/hIg/pwqGqXiDwEvAa4gcdVdb+IPOB9/lFgLbAKz2jArcAXLrWtP+Iy/lGcn8mr+09T1XieCRmJTocTskrK6z0DdNoEZUOyKC8TVc8FmNfNisrZJQYl0AN0DjaBJKnq1/y9c1VdiydJ9F72aK/7Cjw42G1N6Og9AdAnF0x0OJrQtaWigTkT0km1ATqH5PJJGcS5XWy1BHJJJRWeCcrmBGiCssFeB/KSiKwKSAQmItkEQANr6+xm14lGGx5nGBJi3czPzbCBOwewNcATlA32Vb+MJ4mcF5FmETkrIs0BichEBJsAaGC7TjTS0dVjE0gNU3F+JvtONtPS3uV0KCHpjHeCskBeoDqoBKKqqarqUtVEVU3zPvZ/nzATUXwTAFU32wRA/Skpb0AErrALVIelOC+L7h5l+zE7y+3PVu+/SyBH0BjoSvQZ3r8L+rsFLCoTEXztIDbNbf+2lNczc2wa6YnW/jEcCyZnEOMSSuyCwn6VlDcQH+PisomBaf+AgRvR/xbPGFTf77Ws9wV71/o9IhMxZo1PIzU+hpKKBlbP73eggKjV3tXNzuNnuLt4stOhhK2kuBgum5hu7SAXUVJRz4JJo4iPCdwAnQNdiX6/9+5PgdWqeg3wFtAE/F3AojIRwe0SiqaMsi94P3wTlNn1HyNTnJ/FnsomWjusHaS35rZODpxqDvjna7CN6P+gqs3egROvB36Nd2RcYy6lOD+Lstpz1J5tdzqUkGITlPnH4vwsunqUHR+ccTqUkLLdN0FZgAfoHGwC8V08eAvwqKq+iGc4EWMuyQa+69+WcpugzB+KJnuG6LB2tgttKW8gLsbF5ZMyArqfwSaQKhH5GXAHsFZE4oewrYlicyakkxTntu68vfgmKLPuuyOXHB/D3Anpdr1RH1vK67k8CBOUDTYJ3IFn2JCbVLURyAT+PlBBmcgR63axcLINfNfbnsomznd22wRSfrI4P4vdlY2c7/DLKEthr7mtk31VTUE5QBnsdSCtqvqCb+h2VT2lqusCG5qJFIvzszhcfZb6FmsHgT92a7YJyvyjOD+Tzm5l53FrB4E/TlAWMgnEmJFYUuD5IFs7iEdJRQPTxqSQZROU+YW1g1xoS3kDce7At3+AJRATBHO97SCb7Qvuaf841mDT1/pRakIsc8anWZnUa0t5PfMnBb79AyyBmCCIdbsompJpR4jA3qomznV0f3hWZvxjcX4Wu0400tYZ3e0gwWz/AEsgJkiW5GdxpLqFuihvB9lc5kmi1oDuX8X5mXR090R9O8gf2z+C8/myBGKCwveBjvYyw5byeqaPSbX2Dz8rmpKJSzz1/2hW4m3/WDApOBOUOZJARCRTRF4XkaPevx95tyKSKyJvichBEdkvIl/u9dy3RKRKRHZ5bzZXSYibMyGd5Dh3VJexOrp62H7sjJWvAiAtIZY5E9LZUha9ny8IbvsHOHcG8jCwXlULgfXex311AV9R1ZnAYuBBEZnV6/n/VNX53pvNTBjiYt0ursjLjOqG9N2VjZzv7LYLCANkSUEW7584E7XXg5xt62RvENs/wLkEshp4wnv/CeATfVfwXmuy03v/LHAQsCFdw9ji/CxKa1qidlysLWX1iASvPh1tluRn0dmtbP8gOstY24Lc/gHOJZAxqnoKPIkCGH2plUVkCnA5UNJr8UMiskdEHu+vBNZr2/tFZLuIbK+trfVD6Ga4fEdG0TqsyebyemaMTSMjyca/CoQrpmQS45IPOypEm81l9cTFBK/9AwKYQETkDRHZ189t9RBfJwV4HvhrVfVNo/tToACYD5ziwvlKLqCqj6lqkaoW5eTkDO/NGL+YMz6NlPiYqPyCt3d1s+ODMyyx8lXAJMfHMC83g01R+PkC2FRWz8JJo4LW/gEDTyg1bKp63cWeE5FqERmnqqdEZBxQc5H1YvEkjydV9YVer13da52fAy/5L3ITKDFuF1dMGRWV7SDvH2+kvavHGtADbEl+Fj99p4yW9i5S4gP28xZyzpzr4MCpZv72umlB3a9TJaw1wL3e+/cCL/ZdQUQE+CVwUFV/0Oe5cb0e3gbsC1Ccxs+WFGRRXnuO003RNU/65rJ6XGLjXwXa0gLPPOnbomzYnJKKelRh6dTgHqA4lUAeAa4XkaN4Jqh6BEBExouIr0fVMuAe4Np+uuv+u4jsFZE9wDXA3wQ5fjNMSwuyAdhcXudwJMG1ubye2ePTbf7zAFsweRRxbhebyqLr87WprJ6kODeXTcwI6n4dOcdT1XpgZT/LTwKrvPc3AHKR7e8JaIAmYGaNSyMjKZaNpfXcdvlEp8MJirbObnYdb+TepTb/eaAlxLq5fFJG1JVJN5bWsSgvk1h3cM8J7Ep0E1Qul7AkP4tNpXWoqtPhBMX2Y2fo6O758OzLBNbSgmz2n2ymsbXD6VCCorq5jbLacyx1oH3NEogJuqVTsznZ1Max+lanQwmKDaV1xLjE2j+CZElBFqqeYfOjga9XoxMHKJZATNAt8x4pbSyNjjr1xtI6FkwaRXIU9Qpy0rzcdBJiXVHTXXxTWR3pibHMHJcW9H1bAjFBl5edzLj0hKho6Gxs7WDfyaag946JZvExbq6YksmGKDlA2VRWz+L8TNyufpuMA8oSiAk6EWFpQTaby+rp6YnsdpDNZZ7ulVdOtfaPYFpemE1pTUvEdxc/0dBK5ZnzjrWvWQIxjlhakMWZ1k4Onm4eeOUwtrGsjuQ4N/NyM5wOJaos8ybsSD8L8ZWBnWhAB0sgxiG+L/im0siuU28srac4Pyvo3Suj3cyxaWQlx0V8O9t7pXXkpMYzdXSKI/u3T7VxxNj0BPJzktkYwe0gVY3nqag792GyNMHjcglLp2azIYK7i3f3KBtL61hemI1n4I7gswRiHLOsIJutFQ10dPU4HUpA+I5+rf3DGcunZlN7tp0j1S1OhxIQ+0820djayfJC5z5flkCMY64szKa1ozti57HeWFpHdko808Y4U16Idsu8P6zvHY3MaRzeO+o5QHHyDNcSiHHM0oIs3C7h3SOR9wVXVTaW1rNsapZj5YVoNyEjkfzs5IhtB9lwtI4ZY1MZnZrgWAyWQIxjUhNiWTApg3cj8AjxcPVZ6lraWWbDlzjqysJsSiKwTNra0cX2DxpYMc3ZOY4sgRhHrSjMYV9VM/UtkTXNre+savk0SyBOWjbVUyZ9P8LKpCUVDXR2q+Pta5ZAjKN8R1CR1l//nSO1TB+Tyrj0RKdDiWpLCrJwSeQNm/PekTriYlyOj69mCcQ4as6EdDKSYnn3SOR8wVs7uthWcYarptsUyk5LS4hlfm4G7xyNnM8XwIbSWorzMoM6fW1/HEkgIpIpIq+LyFHv335ngReRY96Jo3aJyPahbm9Cn9slXDk1m/eO1kZMf/0t5fV0dPdwlcP1aeNx1bTR7KlsjJgy6emmNo5UtzhevgLnzkAeBtaraiGw3vv4Yq5R1fmqWjTM7U2IWzEth5qz7Rw6fdbpUPzincO1JMa6KZpixzWh4OrpOaj+sdtruPOVe5cXOn+A4lQCWQ084b3/BPCJIG9vQsjyCOuv/86RWpYWZBEf42x5wXjMnZBOVnIcbx+ucToUv3j7cA3ZKfHMGJvqdCiOJZAxqnoKwPt39EXWU2CdiOwQkfuHsb0JA+PSE5k2JiUi2kGO1Z3jWH2rtX+EEJdLWDEth3eP1oX96M9d3T28e6SWq6fn4HJg+Pa+ApZAROQNEdnXz231EF5mmaouAG4GHhSRFcOI434R2S4i22trI+MINxItL8xh67EGznd0Ox3KiPiuaVkRAuUF80dXT8+h4VwHe6qanA5lRHYeb6S5rYtrZ4TGMXPAEoiqXqeqc/q5vQhUi8g4AO/ffs8tVfWk928N8DtgkfepQW3v3fYxVS1S1aKcHPtSh6prpo+mo6sn7LtbvnuklslZSUzJTnY6FNPLisIcROCtQ+FdxnrzUA0xLuFKB8e/6s2pEtYa4F7v/XuBF/uuICLJIpLquw/cAOwb7PYmvCzKyyQ5zs36MP6Ct3d1s6ms3npfhaBRyXHMz83g7TAfNuftwzUUTRlFWkKs06EAziWQR4DrReQocL33MSIyXkTWetcZA2wQkd3AVuBlVX31Utub8BUX42LFtBzePFQdtt15t1WcobWj28pXIerqMO/OW9V4nkOnz4ZM+QocSiCqWq+qK1W10Pu3wbv8pKqu8t4vV9V53ttsVf2XgbY34e3aGaOpbm5n/8nwnKXwjYPVxMe4bP6PEBXu3Xl95bdrpkd5AjGmP9fMGI2Ip84bblSVNw5Ws7wwm8Q4674binzded8K0+68bx+uYeKoRMdmH+yPJRATMrJT4pmfm8H6g9VOhzJkh6vPUnnmPNfNHON0KOYiXC7hquk5vH24lq7u8Bqdt62zm42l9Vw7Y3RITQ9gCcSElJUzRrO7somas21OhzIkbxzwJL1rZ4ZOecF81A2zxtB0vpOtx8Kr6r2lvJ7znd0hVb4CSyAmxFw7w3ME//ah8Oot8/rBGubnZjg6uY8Z2IppOcTHuFi3P7zOct86VEN8jIslBVlOh3IBSyAmpMwcl8q49ATWHwqfL3hNcxu7TzRy/SwrX4W6pLgYlhdm8/qB8Ont19OjvLa/mhXTchwffbcvSyAmpIgI184YzXtH62jrDI+r0n3Xrlj7R3i4YdZYqhrPh01vvz1VTZxubuOm2WOdDuUjLIGYkHPdzDG0dnSzqSw8ulu+caCa3EzPeF4m9K2cORqXwLoD4XGW++q+08S4hJUh2L5mCcSEnKVTs0hNiGHt3tNOhzKg1o4uNpTWsXLGmJDqHWMuLislnqLJmazbH/qfL1Xl1X2nWFKQRUZSnNPhfIQlEBNy4mPcXD9zDOv2n6ajK7S7W757pI72rh5r/wgzN8wew6HTZznR0Op0KJd0pLqFY/Wt3BiC5SuwBGJC1Kq542hu6wr5MtbLe0+RmRxHscNzU5uh8SX8UC9jvbrvNCKe7sehyBKICUlXFmaTEh/DKyFcxjrf0c36g9XcNGcsMW77KoWTyVnJTB+TymshXsZ6df9pFk4axei00Owebp96E5ISYt2snDma1w6cpjNErxp+81ANrR3dfGzuOKdDMcNw05yxbDvWwOmm0Lxo9Xh9KwdPNXPTnNAsX4ElEBPCbp4zjsbWTkrKQ/Oq4Zf3niQ7JZ7i/NC6uMsMzq3zx6MKL+056XQo/fKdHYVq+wdYAjEh7OrpOSTFuXl57ymnQ/mIc+1dvHmohlVzx+IOgalFzdAV5KQwZ0Iaf9gdmgnkpT0nmT0+jdzMJKdDuShLICZkJcS6uXbGaNbtPx1yg9+9cbCats4ePnbZeKdDMSNw67zx7K5soqLunNOhXKCstoXdlU3cdvkEp0O5JEsgJqStmjuO+nMdbC6vdzqUC7y05xRj0uIpmjzK6VDMCHx83nhECLmzkN+/X4VLPAkulDmSQEQkU0ReF5Gj3r8f+RaKyHQR2dXr1iwif+197lsiUtXruVVBfxMmKK6dMZrUhBhe2FnldCgfam7r5J3DtayaOw6Xla/C2rj0RK6YksmLu6pCZmysnh7ld+9XsWxqdsj2vvJx6gzkYWC9qhYC672PL6Cqh1V1vqrOBxYCrcDveq3yn77nVXVt3+1NZEiIdXPrvPG8su8UZ9s6nQ4HgHX7q+notvJVpFg9fzxltec4cCo0xsbacfwMlWfOh3z5CpxLIKuBJ7z3nwA+McD6K4EyVf0gkEGZ0HT7wom0dfawNkQa05/dfoK87GQWTMpwOhTjB6vmjCPGJazZFRplrBd2VpEY6w7p3lc+TiWQMap6CsD7d6BRwu4Enu6z7CER2SMij/dXAvMRkftFZLuIbK+tDa85JozH/NwMCnKS+e2OSqdDoby2ha0VDdxRlGtjX0WIUclxrJiWw5rdJ+nucbaM1d7Vzct7TnLj7DEkx8c4GstgBCyBiMgbIrKvn9vqIb5OHHAr8FyvxT8FCoD5wCng+xfbXlUfU9UiVS3KyckZ+hsxjhMRPrVwItuOneGYw71l/nf7Cdwu4VMLQ7+8YAbv9oUTOdXUxrtHnD3IfOtQDc1tXdy2YKKjcQxWwBKIql6nqnP6ub0IVIvIOADv30vNcn8zsFNVPxy0RlWrVbVbVXuAnwOLAvU+TGj45OUTcQm8sNO5s5DO7h6e31HFtTNG28yDEeb6WWPISY3nyRJnq+TP76wiOyWeZSE28+DFOFXCWgPc671/L/DiJda9iz7lK1/y8boN2OfX6EzIGZuewJWFOTy/s4oeh8oMbx6qoa6lnc8U5TqyfxM4sW4XdxRN5M1DNZxsPO9IDFWN51l/sJrbF04Mm7HVnIryEeB6ETkKXO99jIiMF5EPe1SJSJL3+Rf6bP/vIrJXRPYA1wB/E5ywjZNuXziRqsbzbHRohN5nt51gdGo8V0+3UmgkuvOKSSjwzLYTjuz/yS2es5/PLZ7kyP6Hw5EEoqr1qrpSVQu9fxu8y0+q6qpe67WqapaqNvXZ/h5Vnauql6nqrb4GeRPZbpw9huyUOH618VjQ9326qY23DteE1dGhGZrczCSumpbDM1uPB30Az7bObp7ZdoLrZo5h4qjQHbqkL/smmLARH+Pmc4sn8+ahGkprWoK672e2HadH4Q4rX0W0u4snU3O2nfUHL9Us638v7zlFw7kO7l06Jaj7HSlLICasfG7xZOJiXPxqY0XQ9nm+o5vfbP6AlTNGMyU7OWj7NcF3zfQcxqUn8NTW40Hbp6ryxOZjFOQkszRMGs99LIGYsJKdEs9t8yfw/M5KzpzrCMo+n91+goZzHTxwdUFQ9mecE+N2cecVk3j3SC2HT58Nyj53nWhkT2UT9y6dEnbXFlkCMWHnvivzaOvsCcpRYld3Dz9/r5yFk0dxxRSbtjYafH7JZJLj3PzordKg7O+JTcdIiY/hk2Fy7UdvlkBM2Jk+NpXlhdk8sekYHV2Bbex8ee8pKs+c54Gr7OwjWoxKjuOeJVN4ac/JgLe1lde28Ic9p/jMFbmkhMGV531ZAjFh6b4r86g5287v3g/chYWqyqPvlFM4OoWVMwYabcdEki8uzyMhxs1PAnwW8p9vHCXO7QrbAxRLICYsXT0th3m5Gfzg9SOc7+gOyD7eOVLLwVPN3L8i34ZtjzLZKfHcXTyJF3efDNjwOQdPNfOH3Sf5wrIp5KTGB2QfgWYJxIQlEeGbq2ZS3dzOLzeU+/31u7p7eOSVQ0zISGT1fBv3KhrdvyKfGJfwk7cDcxby/XVHSE2I4c9XhOfZB1gCMWFsUV4mN8waw0/fLqP2bLtfX/uprcc5dPos37xlJnEx9jWJRqPTErhr0SRe2FnF0Wr/9sh6//gZ3jhYzf3L80lPivXraweTfTNMWPvazTNo6+rhh+uP+O01G8518P11R1hakMXNc0J/TgYTOA9dO5WUhBi+/sJev43Bpqp877XDZCbH8YUr8/zymk6xBGLCWkFOCp9dNImnt56gtMY/R4nfe+0wLe1dfOvW2WHXL9/4V3ZKPN9cNZPtH5zh6W3+6Tb+zLYTbCqr52+uKwzLnle9WQIxYe/L1xWSHOfmb5/dTXvXyBrU91Y28cy249y7ZArTxqT6KUITzm5fOJGlBVk8svYQ1c1tI3qt4/WtfOelAyybmsXdxZP9FKFzLIGYsJedEs/3Pj2PPZVNfHftoWG/TnNbJ3/9v++TlRzPX19f6McITTgTEf71trl0dPfwrTX7h/063T3KV57bhdslfO/2eRHRs88SiIkIN84ey33L8vj1pmO8um/ogzN39yh/+dT7fFDfyo8+ezlpCeHbsGn8b0p2Mn+1spBX9p3mF+8Nr9ffLzeUs+3YGf7p1tmMz0j0c4TOsARiIsbDN89g3sR0/v63e4bcd/+7aw/yzpFavr16Dovzw2tAOxMcD1xVwKq5Y/nnlw/y/I6hXcC6ZvdJ/u3Vw9w0eyy3XR453cItgZiIERfj4kefXYBLhNsf3cz7x88MuI2q8uuNFfxiQwX3LpnMZ4vDZzIfE1xul/Cfn5nPsqlZfPX5PbxxoHrgjfAMxvnlZ96naPIo/uOOeRHVMcORBCIinxaR/SLSIyJFl1jvJhE5LCKlIvJwr+WZIvK6iBz1/h0VnMhNqMvNTOK5B5aQGOfiM49t4cVdVRddt7G1gwef2sm3/nCAa6bn8H8+NiuIkZpwFB/j5mf3FDFnfBoPPrWTn79bftHx2Hp6lMc3VPDV3+7hyqnZ/PoLi8K+11Vfohr8+aVFZCbQA/wM+DtV3d7POm7gCJ4pbSuBbcBdqnpARP4daFDVR7yJZZSqfm2g/RYVFen27R/ZlYlADec6eOD/38HWYw2smjuWW+aO5+rpOSTEuqmoO8f7x8/w/XVHqGtp5ys3TOf+Ffm4I6BR0wRHw7kO/u653bx5qIb87GS+sWomCyaPIi0hhq4e5YWdVfzivXLK685x3cwx/Pjuy4mPcTsd9rCJyA5V/cjBviMJ5MOdi7zNxRPIEuBbqnqj9/HXAVT1uyJyGLhaVU+JyDjgbVWdPtD+LIFEl46uHr6/7jC/3VFJ/bkO4mNcuF1Cq3fsrPycZH74mcuZOzHd4UhNuHrrcA3f+cMBynu1ucW4hK4eZe6EdP5sRT63zB0X9gcnF0sgoXw+NQHoPbt9JVDsvT/GNw+6N4lcdKhUEbkfuB9g0iSrb0eTuBgXX181k6/eNINtxxp4/UA13T3KnAnpzJmQxtScFJvf3IzINdNHs6wgm9cPVFNzto2m852c7+jm6umjWZyfGVHtHf0JWAIRkTeA/saB+KaqvjiYl+hn2ZBPl1T1MeAx8JyBDHV7E/7cLmFxfpb1rjIBERfj4pbLxjkdhiMClkBU9boRvkQlkNvr8UTgpPd+tYiM61XCqhnhvowxxgxRKJ+/bwMKRSRPROKAO4E13ufWAPd6798LDOaMxhhjjB851Y33NhGpBJYAL4vIa97l40VkLYCqdgEPAa8BB4FnVdU3jsAjwPUichRPL61Hgv0ejDEm2jnaCyvYrBeWMcYM3cV6YYVyCcsYY0wIswRijDFmWCyBGGOMGRZLIMYYY4YlqhrRRaQW+GCYm2cDdX4Mxwnh/h4sfueF+3sI9/jBmfcwWVVz+i6MqgQyEiKyvb9eCOEk3N+Dxe+8cH8P4R4/hNZ7sBKWMcaYYbEEYowxZlgsgQzeY04H4Afh/h4sfueF+3sI9/ghhN6DtYEYY4wZFjsDMcYYMyyWQIwxxgyLJZBBEJGbROSwiJR652APGyKSKyJvichBEdkvIl92OqbhEBG3iLwvIi85HctwiEiGiPxWRA55/y+WOB3TUIjI33g/P/tE5GkRSXA6poGIyOMiUiMi+3otyxSR10XkqPfvKCdjHMhF3sP3vJ+jPSLyOxHJcCo+SyADEBE38GPgZmAWcJeIzHI2qiHpAr6iqjOBxcCDYRa/z5fxDOsfrn4IvKqqM4B5hNF7EZEJwF8BRao6B3DjmZ8n1P0auKnPsoeB9apaCKz3Pg5lv+aj7+F1YI6qXgYcAb4e7KB8LIEMbBFQqqrlqtoBPAOsdjimQVPVU6q603v/LJ4frgnORjU0IjIRuAX4hdOxDIeIpAErgF8CqGqHqjY6GtTQxQCJIhIDJPHH2UFDlqq+CzT0WbwaeMJ7/wngE8GMaaj6ew+qus47XxLAFjyztTrCEsjAJgAnej2uJMx+gH1EZApwOVDicChD9V/AV4Eeh+MYrnygFviVtwz3CxFJdjqowVLVKuA/gOPAKaBJVdc5G9WwjVHVU+A5uAJGOxzPSN0HvOLUzi2BDEz6WRZ2fZ9FJAV4HvhrVW12Op7BEpGPATWqusPpWEYgBlgA/FRVLwfOEfqlkw952wlWA3nAeCBZRD7nbFRGRL6Jp0T9pFMxWAIZWCWQ2+vxRMLg9L03EYnFkzyeVNUXnI5niJYBt4rIMTzlw2tF5H+cDWnIKoFKVfWd+f0WT0IJF9cBFapaq6qdwAvAUodjGq5qERkH4P1b43A8wyIi9wIfA+5WBy/mswQysG1AoYjkiUgcnsbDNQ7HNGgiInhq7wdV9QdOxzNUqvp1VZ2oqlPw/Nu/qaphdfSrqqeBEyIy3btoJXDAwZCG6jiwWESSvJ+nlYRRJ4A+1gD3eu/fC7zoYCzDIiI3AV8DblXVVidjsQQyAG9j1UPAa3i+NM+q6n5noxqSZcA9eI7cd3lvq5wOKgr9JfCkiOwB5gP/6mw4g+c9c/otsBPYi+d3I2SG07gYEXka2AxMF5FKEflT4BHgehE5ClzvfRyyLvIefgSkAq97v8+POhafDWVijDFmOOwMxBhjzLBYAjHGGDMslkCMMcYMiyUQY4wxw2IJxBhjzLBYAjHGGDMslkCMMcYMiyUQYxwkIld453VIEJFk75wbc5yOy5jBsAsJjXGYiPwzkAAk4hkz67sOh2TMoFgCMcZh3jHWtgFtwFJV7XY4JGMGxUpYxjgvE0jBM75RyE8Va4yPnYEY4zARWYNnqPo8YJyqPuRwSMYMSozTARgTzUTk80CXqj4lIm5gk4hcq6pvOh2bMQOxMxBjjDHDYm0gxhhjhsUSiDHGmGGxBGKMMWZYLIEYY4wZFksgxhhjhsUSiDHGmGGxBGKMMWZY/h8Jpvqfal0/UQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "ax.plot(x,y)\n", "ax.set_xlabel('x')\n", "ax.set_ylabel('sin(x)')\n", "ax.set_title('Graf funkce sin(x)')" ] }, { "cell_type": "markdown", "id": "fa6ca77e", "metadata": {}, "source": [ "Přidáme funkci `cos()`, nastavíme barvu (`color`), styl (`linestyle`) a šířku (`linewidth`) linky. Průhlednost se nastavuje parametrem `alpha`. Legendu zobrazíme příkazem `legend()`:" ] }, { "cell_type": "code", "execution_count": 40, "id": "c1619906", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEWCAYAAABIVsEJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABka0lEQVR4nO2dd3hcV5m432/UmyWrWC6yLMuWe7fcSxI7PZCQEAIhhFSyAUJ2WX6UXXZZlgWWJYRQAmQDaUA6STYmceIUO3Hce6+SLFtyUbV6l87vjzNjy7LKaDQz98g67/PMMzN3bvmudO/9zvmqKKWwWCwWi6W3uJwWwGKxWCz9E6tALBaLxeITVoFYLBaLxSesArFYLBaLT1gFYrFYLBafsArEYrFYLD5hFYjFaETkZhEpEJEaEZkZrG072dezIvLjXm6T7j52SC+3+1cR+VMv1p8kItu8XPd1Ebm2N/IEGxH5BxH5lRfrRYjIIREZEgSxLJ0gNg/E4i9E5AvAN4EpQC1wDHgO+IPy8UITkVzgn5VSbwZz20729SxQqJT6t77uy9+IyGvAq0qpl7xYdy76/zE78JL1HhEJB3KB+Uqpk16s/x0gVSn1rYALZ7kIOwOx+AUR+Rbwa+ARYCiQCjwILALCu9jGm5H5KGC/j2L1Zdt+gYgMA64A/s+b9ZVSW4BBIpIdSLn6wE3AIW+Uh5sXgLtEJCKAMlm6wCoQS58RkXjgR8DXlFJ/U0pVK81OpdQdSqlG93rPisgfRGSliNQCV4jIDSKyU0Sq3OamH7rXjRCRGiAE2C0iuSLytoh8o8Ox94jIZzosu2hb93IlImPbrXfOLCUil4tIoYh8S0SKReS0iNzTxfnGicgaEfmNaKJE5FEROS4ilSKyzr0sw33M0C72810ROSki1SJyWESWu5f/UET+6v7s2cddInJCREpF5PvtdnMVsEMp1eBef4yIlIvILPf34e5tLm+3zUfADV3INFhE3hKREhE56/6c1tm67vVHus1iJSJSJiKPu5e7ROTf3H+TYhH5s/s6QUQiReSv7vUrRGSriKS6d3kd8HG7/X9eRPJEZJD7+3UickZEUgCUUoXAWWB+VzJaAodVIBZ/sACIALwxFX0R+AkQB6xDm7q+DCSgH2pfFZHPKKUalVKx7m2mK6XGoM1hX/LsSESmAyOAle0P0MW23jAUiHfv8z7gdyIyuP0KIpIEfAisV0o97DbN/QKYDSwEEoHvAG3dHUhExgMPAXOUUnHANUB+N5ssBsYDy4EfiMhE9/KpwGHPSkqpXOC7wPMiEg08AzyrlPqo3b4OAtO7OI7Lvc0oIB2oBx7v4hxCgLeA40AG+u/mMaPd7X5dAWQCse32cxf67zwSSELPVOu7OJ+XgY3Ab9x/+6eA+5VSJV6ejyWAWAVi8QfJQKlSqsWzQEQ2uEeX9SKytN26byql1iul2pRSDUqpj5RSe93f9wAvApd1cZw3gSwRyXJ/vxN4WSnV5KfzaAZ+pJRqVkqtBGrQD20Pw9Gj41c9vhARcQH3Av+olDqplGpVSm3wzLq6oRWtdCeJSJhSKt/98O+K/1RK1SuldgO7Of/ATACq26+olPojcBTYDAwD2s9YcK+f0NlBlFJlSqnXlFJ1SqlqtLLv6v8xF/03+bZSqtb9/1zn/u0O4JdKqTylVA3wL8AX3LOxZrTiGOv+e21XSlV1dT7A14Fl6JnT35VSb3l7PpbAYhWIxR+UAcntTTVKqYVKqQT3b+2vs4L2G4rIPLc5qEREKtGj0eTODuJ+KL8CfMn94L4d+Is/z6O9EgTq0CNnDzcAUcAT7ZYlA5Fox6/XKKVygH8CfggUi8hLIjK8m03OdCHXWfRsriN/RAcz/LYTZRYHVHR2EBGJFpH/dZueqoC1QIJ07q8aCRzv8DfzMBw9M/FwHAhF+8b+AqwCXhKRUyLycxEJ6+p8lFIVwKvu83m0k2N1eT6WwGIViMUfbAQa0Q7QnugYjfUCsAIYqZSKRz+cpZvtn0OPbpcDdUqpjb2Qsw6Ibvd9aC+2Bf1QfhdYKSIx7mWlQAPgrZnsHEqpF5RSi9HmIgX8T2/3AewBxrVfICKxwK/Q5p4fikhih20momcxnfEt9KxrnlJqEOCZPXb2PykA0rvw8ZxCn5eHdKAFKHLP8P5TKTUJbfb7FNqM2dX5zEDP8l4EftPJsbo7H0sAsQrE0mfcI8T/BH4vIreKSKzbiToDiOl2Yz16LFdKNYgOMf1iD8faiPYvPErvZx+7gC+KSIjoXIiuTDPd8RDaRv+WiEQppdqAp4Ffuh3WISKyQHqIChKR8SKyzL1eA9oH0OqDPO8Ds0Qkst2yXwPblVL3A29z4YwJ9Hm/08X+4tyyVLgVz390c+wtwGngZyIS43aOL3L/9iLwTREZ7VZoP0WbG1tE5AoRmeqe1VShTVqec19Ju/+L+7z+CvwrcA8wQkS+1u73EWi/06Zu5LQECKtALH5BKfVz4J/RDuRioAj4X7RDd0M3m34N+JGIVAM/QJuoeuLPaGfrX3sp5j8Cn0abO+7Ay9DX9rid5g+gR99vuh9w/w/YC2wFytEziZ7urQjgZ+gZzBlgCPoh2Vt5ioDVuGd/InITcC3aFAj6fzJLRO5w/z4HqHWH83bGr9BmulL0Q/ndbo7div57jgVOAIXA590/P41W8GvR+UANgCeCbijwN7TyOIj2K3n+l38HJrQz5/03Ov/mD25T3JeAH7fzg30ReM4Ln5MlANhEQku/Q0S+DDzgNv8MeERkEtq0N7enhE3RSYdPuYMEjEREHgAmKaX+qYf1ItCmq6VKqeJgyGa5EKtALP0Kd2jqauD3Sqk/Oy2PxTKQsSYsS79BRK4BStDmsRccFsdiGfDYGYjFYrFYfMLOQCwWi8XiE53W6LlUSU5OVhkZGU6LYbFYLP2K7du3lyqlUjouH1AKJCMjg23bvGqbYLFYLBY3InK8s+XWhGWxWCwWn7AKxGKxWCw+YRWIxWKxWHzCKhCLxWKx+IRVIBaLxWLxCUcViIg87W53ua+L30V029Ac0a1LZ7X77VrRbUBzROR7wZPaYrFYLOD8DORZdOXQrrgOyHK/HgD+AOdaaf7O/fsk4HZ3QTmLxWKxBAlH80CUUmtFJKObVW4C/uyuMLpJRBJEZBi6/3KOUioPQERecq97IGDCbnT3LRo9GlJTQbrreRR4dhVUkFNcw6DIUOKjwhidEsOQuMieN7SYSVMTrF4NI0bA5MngcnZsV1HXxP5TVRw8XUVGUgyLs5KJDOusKaHFWJqbobUVIgP3XDA9kXAEF7ZALXQv62z5vM524C4N/QBAenq6b1IoBevXQ02N/j5oENx0E4zpdRO6PtHapvjgYBF/XJvHtuNnL/gtPMTF/UtG8/UrxhITYfq/dYDT2AibNkF9PVzrnoC3tOhlAB9/DFdcAZMmBX2gsi2/nO+/sY/DRRe2JY8JD+GKCUN4YGkm09ISgiqTpZcoBZ98AmvXwmWXwZIlATuU6U+azu4e1c3yixcq9STwJEB2drZvlSOVgquvhrw8OHYMKivhr3/VN/mSJUG5ySvrmrnn2S3sOFFB2uAofvCpSVw+PoXaxlYq6pt4Y8dJfv9RLn/bXsi/f2oSn57eXXtti2OcOgXPPw+1tXqWsWABxMdDWJi+nnbtgtJSePVVSE+HO+6AiG6bG/qF5tY2fvvhUR5fk8OIwVF899oJTB0Rz7ihsRw6Xc07+86wav8Z3jtQxM8/O43PzBwRcJksPlBXB2+8AUeP6u+VlQE9nOkKpBAY2e57GrrXcngXywODywXTpulXW5seIa5dq00OBQXwuc9BeHjADl9W08idT20hp7iGn986jVtmjiA05EITx5KsFO6YP4r//Pt+vvHiTuqbWrltzsgu9mhxhNOn4c9/hoYGGDkSli/XygO0ArnsMli8WCuRjz6CEyf0QOXOOwN6fVXWNXP3s1vYeaKCz85K44c3TiIuMuzc70PiIlk6LoXvXDOeB/+6nX96eRdHi6v51lXjcbmcNeVa2lFUBC++CBUVEBUFn/0sjB0b0EM67UTviRXAl93RWPOBSqXUaXTr0Cx3v+Vw4AvudQOPy6VHinfcof9JLpdWKgGiuKqBLzy5idySGp788mxuyx55kfLwMHvUYP724EKWZCXzvdf3sGr/mYDJZeklRUXwl79o5TFxItx9N3RW2DMkBGbPhvvu08qloAA2dNcRuG+0tLbx0Is72Heykt/ePpNHb5t+gfJoz+CYcP5y3zxunzuS363J5V9e3xswuSy9pLYWXnhBK48RI+Af/iHgygMcnoGIyIvA5UCyiBQC/wGEASilngBWAtcDOUAdcI/7txYReQhYBYQATyul9gdV+LFj4etfh5iYgJmwGppbufOpLZysqOfZe+ayYExSj9uEh7r43ztnc8efNvONF3fynJfbWQLI2bN65lFXB+PGwa23akXRHQkJcNdd2i8SQBv2T1Ye5JOjpfzPZ6d6ZfYMD3Xx05unkhAdzh8+yiU7YzCfy7YzXcdZtUqbq9LS9OAkNDiP9gHVUCo7O1sFrBpvS4t+UKRcVPHYZ3781gH+tO4Yz9wzhyvGD+nVthV1TXzuiY2cqWxg1TeXMjwhym9yWXpJSQm89poebNx+e9Bu7p54acsJvvf6Xu5ZlMF/fHpyr7ZtbVN86U+b2VlwlhUPLWZcalyApLR4RU0NrFypgzIGDfL77kVku1Iqu+Ny001Y/YO6Onj2Wf2qru5pba/YmFvGU+uP8aX56b1WHgAJ0eE8ffccWtoUP3hzHwNpoGAcKSnwla/Abbf5rjxqa+H116GszC8iHThVxb+/uY8lWcl8//qJvd4+xCX8+vYZxEaE8bXnd1DX1OIXuSw+Ehurr68AKI/usArEH0RGaidnbS28916fd1fd0Mz/e3U36YnR/KsPN7eHkYnR/PNV4/jgYDHv7LP+kKDT3Hz+c0hI36KpPvoI9uyBFSt0VGAfUErxwxX7iYsM47e3z+zSp9YTQ+Ii+fUXZpBbUsOP/h64FCxLFzQ1wbZtOtfDIawC8QcuF9x4ox5d7t0LhYV92t2P3zrI6cp6fnnbdKLD+2buuGdRBpOHD+I/Vuynsr655w0s/kEpeOklHY5bV9f3/S1bpkeZx4/Dli192tWK3afYkl/Ot68ZT0J036K7Fo1N5v7Fo3l5WwH7TgY2ZNTSgXXr4K234M03HRPBKhB/kZCgY/oB3n3X51Hi/lOVvLytgK8syWT2qMQ+ixUa4uJnt0yjrKaRn71zqM/7s3jJ3r2Qm6vzhvwRpRcVBTfcoD9/8IHPptLaxhZ+uvIgU0fEc5ufnN8PLcsiISqM/37noDWVBouKivPReXPmOCaGVSD+ZPFiPUosLIR9ndaH7JFfvneEQZGhfO0K/4XgTU2L577Fo3lxywn2n7KjxIDT1qZNTgBXXqmvCX8wcSJMmKBNY+vW+bSL367OoaiqkR/eOJkQP+VwxEeF8fDyLNbnlPHRkRK/7NPSAx98oAN3pk7VOUUOYRWIP4mI0MlhAO+/f6EN3At2nDjLh4eK+YfLxhAf1Xksvq88tCyLuIhQHl+d49f9Wjphzx4oL4fERJgxw7/7vuIK/b59O1RV9WrT42W1PLUuj1tmjWD2qMF+FeuOeaPISIrmv1cepKU1cHlRFnSC6b59Ovn0yisdFcUqEH8zY4aukbVkSc+x/h34xarDJMeGc/fCDL+LFR8Vxt2LMnhn3xkOn/FPpJilE1pbdaUC0Jnl/i6KmJqqa2S1tmoTWS944uNcRITvXjvBvzKh80O+c+0EjhTV8LftffMBWnrggw/0+8KF5ysZOIRVIP5GRJeemDOnVw+PDTmlbMgt46uXB64Y4r2LRhMTHsLja+wsJGDs2aPzgZKStHkhEFx5JXz1qzBzptebFFc18Nr2k9w6O43UQYGpznrdlKHMSk/g1x8epdnOQgJDQYGegURFwaJFTktjFUjA8cKpqJTiF+8dZlh8JHfM87FisBcMjgnnzgUZvLXnFDnFNQE7zoCmslIPHAIx+/CQmAhDepcb9PT6fFra2nhgSWZgZAJEhK9fMZbTlQ2s3Hs6YMcZ0AwfDp/5jI7KC2B9NG+xCiRQNDXBmjXw3HM9KpEdJ86y40QFX718TMB7Lty/ZDSRoSH83s5CAsPll8M3vgFTpgT+WErpCtE9RGRVNTTz/KbjXDdlGBnJMQEV6YrxQ8hMjuHpdcdsRFYgCAnRZnIHI6/aYxVIoAgJgR07ID+/R1v1cxuOExcZymdnpQVcrOTYCO6Yl86bu09RUO6H/ATLxQweHJyGUKtX6xpb27d3u9oLm09Q3djCg5cFvn+NyyXcs3g0uwsr2d6hZ42ljziYMNgVVoEEipAQmOfucdVNNdXiKj3d/9zskUFrBHXfktEopXhhy4mgHG9AUFwMhw8HtDLzRWS6zVHbt3f5cGlsaeXpdcdYNDaJqWnBcbh+dtYI4qPC+NMnx4JyvAFBbS388pd9yjELBFaBBJLsbG2nzMvTvSA64cUtBbS0Ke5cMCpoYg2Lj2L5xFRe3VZAU4t1dvqF9et1L4ZPPgneMTMyIDlZm7AOH+50lbd2n6a4ujEosw8P0eGhfHFeOu8dOGNnuf5i2zatRMrKHG+n3R6rQAJJZKTu7QCdlp9obm3j+c3HuWxcCqMDbJvuyBfnpVNa08R7B2yNrD5TVwf79+sbe9q04B1X5LwtfOvWTld5eWsBmckxLB6bHDy5gLsWZOAS4Zn1+UE97iVJW9v5/+/Chc7K0gGrQAJNtrsC8v792rHejlX7z1Bc3chdC4M3+/CwNCuFtMFRPL/JmrH6zM6dOit47Fjt/wgm06frhLJjx3TZ+HbkltSwJb+c2+aMRII8ah0aH8kN04bxyrYC6pvMs933K3JydLn25OTOm5A5iFUggSYpSfe2bmq6yMzw5w3HSU+M5vJxvS/X3ldCXMLtc9PZmFdGbokN6fUZpbR5AZyJjImMPD/r6dDr5pWtBYS4hFtmOdO//Atz0qlpbLGz3L6yc6d+nznTKPMVOKxARORaETksIjki8r1Ofv+2iOxyv/aJSKuIJLp/yxeRve7fAtQlyk8sW6a7hLUL7cwp1qPDL81Pd6yv9Oey0wh1CS9utrMQn8nJ0YmDCQlBaSHaKXPmQHS0bljlprm1jdd2FLJ8whCGxAUmcbAn5o1OJG1wlM1M7wu1tXrg6XIF1zzqJY4pEBEJAX4HXAdMAm4XkUnt11FKPaKUmqGUmgH8C/CxUqq83SpXuH+/qFOWUWRk6Fe70cP/7TyJS+AzM50ZHYLu53DN5KH8bUchDc3WzOATntHh7NnBCd3tjKFD4VvfgqVLzy368GAxpTVNfH6Og4X2XMJnZ6WxLqeUUxX1jsnRrzl6VPtAxo6FOPO6Pjo5A5kL5Cil8pRSTcBLwE3drH878GJQJAskzc20tSne2HmSJVkpjo0OPXxxXjoVdc28d6DIUTn6LSNGaNv09OnOytGh7tor2wpIHRTBZeP812LZFz47Kw2l4I2dJx2Vo98yYwY8+KC2YhiIkwpkBFDQ7nuhe9lFiEg0cC3wWrvFCnhPRLaLyANdHUREHhCRbSKyraTEwVLT9fXw/PPw+ONszSvlZEU9Nzs4+/AwPzOJ1EERrNh1ymlR+ieLFsFDDwW9lWin1NfDtm0UnSzlo8PF3Do7zedug/4iPSmauaMTeW17oc1M95WhQ/XLQJy8ujoz/Hd1hX0aWN/BfLVIKTULbQL7uogs7WxDpdSTSqlspVR2SoqDo7HISB3DXVnJJ6s2Ex0ewtWTU52Tx02IS/j0tOF8fKSYyjrbsbBf8+ab8NZbrH/zI9oUfmsY1VdunZ1GXmktO05UOC1K/8IfnSwDjJMKpBBof4WnAV0Ng79AB/OVUuqU+70YeANtEjMXEZgxg5bWNk59vIlrpwztc7taf3HjjOE0tyre2WcL4HlNdbVu6lRpUIMud5BGwdotzExPYFRScHOLuuL6qcOICguxzvTe0NoKv/0t/OlP0NjotDRd4qQC2QpkichoEQlHK4kVHVcSkXjgMuDNdstiRCTO8xm4GvCtBWAwmTqVY6W1DC0q4JYpwQ/d7YqpI+IZnRzDit3WjOU1e/fqvgzvvuu0JOcZP57yZoUqLOSWdGd9a+2JjQjluqlDeWv3KRpbbLCGV+TlaZNkc7NuVGcojikQpVQL8BCwCjgIvKKU2i8iD4rIg+1WvRl4TylV225ZKrBORHYDW4C3lVIG3cldMHgwGxsiGByiWKAqnJbmHCLCp6cPZ2NeGUVVDU6L0z/Yu1e/B6rnhy+EhbExQptFr6fUYWEu5Mbpw6lubGHdUbPkMpb9+/X7pEndr+cwjnrYlFIrlVLjlFJjlFI/cS97Qin1RLt1nlVKfaHDdnlKqenu12TPtqZTUdfE262JjB8aR8jBA06LcwE3Th+OUvDWHmvG6pGSEl3bLDISxo1zWpoLeLVxMMMTokjKO2xU0b2FY5IZFBnKyr02qbBHWlvh0CH9efJkZ2XpAZuJHkQ+OFjMwcSRjB8ap+O7DSrPPHZILFNGDGLFLhtu2SOe2cfEiRBqhh8L4GhRNR+3xJKZkap7sp8yxyQZHuriqklDef/AGVvAsyfy8qChQbcvTg5uDbPeYhVIEHl33xnihqYw5J47dNOhXvZMDzQ3Th/O7sJK8ktre155IHPAPXsMRtOoXvDWntPgcjF22QIYPTq4peW94PqpQ6lqaGFDrjVjdUs/MV+BVSBBo7axhbVHS7hm8lBk6lSIjXVapIv41LThALyzz5oZuqS0VL+ioowqbKeU4q09p5g3OpGEmz8Fd90FI80I4/WwOCuZuIhQ2+62O5Q634DOcPMVWAUSND46XEJTSxvXTmmXEKSUUaPE4QlRTEuLt8XvuqOtTZuuJk82agZ56Ew1uSW1ehBgWME9DxGhIVw5KZX3DhTR3GrOdW8UIjox9fbbjTdfgVUgQePd/WdIjg1n9ih3ue8tW+BXv+qyEZBTXD0plZ0nKii20VidM2QIfP7z8KlPOS3JBazcexqXwHWeAYpSUFCgy7wbxHVThlJR18ymvDKnRTGXiAgYP95pKbzCKpAg0NDcyuqDRVw1KZUQT+Xd5madhOaxdxrCVZP0A+j9g7Y2Vn/i/QNFZGckkhTrzhk4ehSeegref99ZwTqwdFwKMeEhNhqrM9rajLJIeINVIEFgQ24ptU2tXDO5nflq4kT9npNjVDTWuNRYRiVF874trngx+fn6wdzS4rQkF1B4to5DZ6q5amK70jijR+t2yqdOGZUtHxkWwvKJqazaf4YWa8a6kPx8eOQRWL3aaUm8xiqQIPDuvjPERYSycEw7m2ZiIqSk6HC9E+b04xARrp6UyoacMqobbG2sC1i7VhfENGzW+OHBYgCunNROgYSFne9P4skpMIRrJg+lvLaJnQUVTotiFkeO6OxzgwaUPWEVSIBpaW3j/QNFLJ84hPDQDn9uTxKaaX6QyUNpam3j4yMOVi82jfp6PUJ0uYxLHvzgYBFjUmIYndyh9tWECfrdMAWydFwyoS45p/gsaJ+V5znQT/wfYBVIwNl2/Cxn65ovNF958FwoR44YlTU8K30wSTHhvLffmrHOceSItk+PGqVDeA2hqkE7pC+YfXjIytIK7/hxoyq7xkWGMS8zkQ+tn+08paW6s2V0NKSlOS2N11gFEmDWHComLERY0lljn7Q0fcGUl+sLyBBCXMKVE1NZc6jYZg178IziPb4rQ1h7pITmVnWh/8NDVNT5hMIjR4IvXDcsm5DK0eIaTpSZo9gcxTP78Cj9fkL/kbSfsvpQMfNGJxEb0UnJC5cLrrtOJ30lJgZfuG64enIq1Y0tbLThltomnZenP5tmvjpQRGJMODPTB3e+wvjxOmnVMMf/8gm6GvXqQ3YWApxX8P3IfAVWgQSUgvI6jhbXcPn4bhpZTZ2qR4kGJaUBLBqbTGSYizWHrJ2aEyd0T4YhQyAhwWlpztHc2sbqQ8UsmzDkfHh4R2bP1v3Ss7ODK1wPZCTHkJkSw4f2+tLmxYIC/QwYM8ZpaXqFVSAB5KPD+uZYNsGc3h/eEhkWwoLMpHPnMKBpatJZwVlZTktyAdvyz1LV0MKVnZmvPISEGJuZvnzCEDbnlVPTaNbsKOhERcEDD8CNNxrd+6MzrAIJIKsPFTMqKfri6JiOHDmiw0P3mdUT6/LxQ8gvq7PFFceP1+Ulli1zWpIL+OBgEeEhLpZkeVHyor4eiswyFy2bkEpTaxvrjg7waD8RGDYMpk93WpJeYxVIgKhvamVDbhlXjB+C9DQCPHtWJ6gdPBgc4bzEY3qzsxA3hpkZPz5SwrzMRGI686+15+RJ+PnP4fXXgyOYl2RnDGZQZKgN5+3HOKpARORaETksIjki8r1Ofr9cRCpFZJf79QNvt3WajXmlNLa0eWe+8jhmc3ONKmUwKknnFnw0kPNBiouhosJpKS6i8GwdOcU1XNZZdF9HUlN1YmFREVRVBV44LwkLcXHZ+CGsOVxMW5s5YexB5fhxePpp2LHDaUl8wjEFIiIhwO+A64BJwO0i0lkB/E+UUjPcrx/1clvHWHOohKiwEOaO9iK6avBgHYXV0KBHiwZx2bgUNuaW0dDcf7Jj/coHH+iil4Zln689osO+vVIgoaGQmak/Hz0aQKl6z7IJKZTWNLH3pDnlVoLK0aM6SKOkfw7SnJyBzAVy3O1pm4CXgJuCsG3AUUqx+lCxO5LJS7OHp+xETk7gBPOBy8en0NjSNjDDeVtazlezTU93VpYOrD1SwvD4SMYO8bKvjCcAwDAFsiRLK8BPBqofxNP7w3P/9zOcVCAjgIJ23wvdyzqyQER2i8g7IuLpsOLttojIAyKyTUS2lQRJyx8truFkRT1XTPBidOjBcwF5LihDmJ+ZRGSYi48PD8AbPD9fV00eNgzi4pyW5hzNrW2szynlsvEpPfvXPHiur7w8o3JCkmMjmDx80LkZ1YCipgZOn9bmxVGjnJbGJ5xUIJ1d+R0NoTuAUUqp6cBvgf/rxbZ6oVJPKqWylVLZKSm9eKD3gbVun8Hl43sRvpuRoZ20J0/qiBlDGNDhvJ7RumHhuztPVFDd2OKd+cpDfLz2hTQ1GVW8E3SJ9x0nzg684p2eweKoUdrM2A9xUoEUAu17bqYBp9qvoJSqUkrVuD+vBMJEJNmbbZ3kk6OlZKbEMCKhFzWTwsNh4UK49lrj4vYHbDivx5xomHnh4yPFhLiEhWN72bFu7Fh9bRkWzrs0K4WWNsXG3AFmJu3n5itwVoFsBbJEZLSIhANfAFa0X0FEhop7ji4ic9HylnmzrVM0NLey+VgZS7N8mO0sXw7z5kFkpP8F6wMDMpy3shLKynRil2HF7T4+UsKs9AQGRYb1bsMFC+Db39bvBjF71GCiw0P45OgAMmO1733ez7LP2+OYAlFKtQAPAauAg8ArSqn9IvKgiDzoXu1WYJ+I7AZ+A3xBaTrdNvhncTE7jp+lobmNxb0dHRrMqKQYRiVFsy5nAN3gRUXapDh6tFHF7UqqG9l3sqp35isPsbG6eKdhhIe6WJCZxNqB5Ehva4Orr4a5c/tF7/OucNTw5jZLreyw7Il2nx8HHvd2WxNYe7SUUJcwf0ySbzsoKNCVX2fONOrCWjw2mTd3naK5tY2wEHMeqAFj3Dj43veM8kcBrMvRD9nLxvWhPI5SOjggPNxPUvWdpeNS+PBQMcfLahmV1EPlhkuBkBCded4Ps8/bMwCeBMFlXU4Js9IHd1591xu2bYP1640rv714bDI1jS3sHkhd5MLCYNAgp6W4gI8Pl5AUE87k4T7KdfQoPPYYrDRr7OUpx7J2IJmxLgGsAvEjZTWN7D9V5V1toq4wNB9kwZgkRBgYdurmZqMqAnhQSrE+t4xFY5NxdVV9tyfi4nQ2el6eUU3MRifHkDY4ik8GQtWDxkZ46y3jOpH6glUgfmR9bhlKweK+KBBPxvCJE0bF6ydEhzNtRDzrB4IfZPNmXTtqyxanJbmAo8U1lFQ3smisj+ZR0KG8MTFaiRjUxExEWDouhQ25ZTS3mqe8/crx49rSsG6d05L0GatA/Mi6oyUMigxlWlqC7zuJiYGhQ7XyKCjoef0gsmhsMjsLKi79eP28PF1WxjCH8zr37G9RXwI0RM4PUjxNsgxhaZY2k+661M2knr+75//Qj7EKxE8opfjkaCmLxiZ33dzHW0aP1u+G3eCLs5JpbVNszit3WpTA0dysZ3/tH7SGsD6nlIykaNIG91Gxec7LsKoHCzKTEeHSn+V67mvPfd6PsQrET+SW1HK6suFcbZ8+YegIcfaowUSGuS7tcF6P6XDoUKNmIM2tbWw+Vt775MHO8OQd5Ofrdr2GEB8dxpTh8Wy4lBMKa2p0heewMOPyi3zBKhA/4Rk19cmB7mHUKB3CO3y4UY7OiNAQ5o5OurQViKHJXXsKK6hpbPFPftGgQfr6amqCwsK+78+PLBybxM4TZ6lrMsf/51faF+fsp+VL2mMViJ/YkFvKyMQoRib6YdQaHq474N1wg3FlTRaPTSKnuIbTlWblR/gNQ+3T646WIQILMvvgQG/PNdfAvfcaNwpeNCaZ5lbF1vyzTosSGDwKxLDry1esAvEDrW2KTXnlLMw0J/EvUCweq01063MuQTNDXR2cOaNHhoaVb1+fW8rk4YMYHOOn5L+sLH2OhnVZnJORSHiIiw2X6iw3OVlXd7YKxOLhwKkqKuubWdiX8MrOqK7WWekGMWFoHEkx4ZemozMqCr76Vbj5ZqPMC7WNLew8cbZv0Vf9hKjwEGamJ7A+9xK8vkAXTP2Hf9BK5BLAKhA/sMF9sfvNvAA6ke23v4WXXtKKxBBc7jItG3PLUAb5Z/yCiM6TmDy553WDyJb8cppblf/rq+3ZA3/963mziiEsHJPM/lNVVNQ1OS2KpQesAvEDG3LLGDskliGD/FhF1+U632TGsBt8QWYSZ6oayC+rc1qUAcGGnFLCQ1xkj/KiPXJvKC7WFQ8Mq3qwaGwSSsGmS60LZk6OTt68hAZeVoH0kaaWNrbml7PQ1+KJ3WFoPojnXDdcSmaG6mp46in45BOnJbmI9TllzBqVQFS4n/0VnuvLsAHK9JEJxISHXFp+NqXg9dfh8ceh/NLJo+pRgYjIAhH5nYjsEZESETkhIitF5OsiEh8MIU1mT2EFdU2tgVEgHkfbsWNGjVpGJ8eQOiji0moAdOyYzvw3rFtfRV0TB89UsSAQARojR2on+unTOvPeEMJCXMwdnXhp+UGKinSQxqBBkOjnmaSDdKtAROQd4H50341rgWHAJODfgEjgTRG5MdBCmsyGXB1eOd+f/g8Pqak6ma2yEs6aE9YoIiwck8ymvEvID5Kfr98zMpyU4iI2HytHKV3M0u+Eh8OIEXpwcvy4//ffBxaOSSavpJYzleYotj7hub5GjzYuNL8v9DQDuVMpdZ9SaoVS6pRSqkUpVaOU2qGUelQpdTmwwdeDi8i1InJYRHJE5Hud/H6He+azR0Q2iMj0dr/li8heEdklItt8laGvbHCHVyZEB6C3gsh5P4jnAjSEBZlJlNY0cbS4xmlR/IPHjGNYeYmNuWVEhrmYPjJAk31DzVieiMZLxkxq6PXVV7pVIEqpUgARmdTxNxG5vP06vUVEQoDfAdehZzW3d3KcY8BlSqlpwH8BT3b4/Qql1AylVLYvMvSVhuZWdhyvYOGYAIZXZmRoh3plZeCO4QOeEfElYcaqqNAzvMhIXcLEIDbllZE9KpGI0ADlaxiqQCYOHUR8VNil4Uhvazs/wzNshttXvHWivyIi3xVNlIj8FvjvPh57LpCjlMpTSjUBLwE3tV9BKbVBKeWx3WwCjEqb3X78LE2tbYExL3iYMQO++1244orAHcMHRiZGkzY46tIYIXoenh5lbQhlNY0cOlMd2OsrLQ2mTIE5c4zys7lcwrzRiWy6FAp3FhVpH1NCgn5dQnh7t8wDRqLNVVuBU8CiPh57BNC+Xnmhe1lX3Ae80+67At4Tke0i8kBXG4nIAyKyTUS2lZT4t1nNxtwyQlzCnIwAOsUiIvTLQBZkJrEpr5y2NnMePD5hqHlh8zH98AyIf81DaCjceitkZxtnm5+fmcSJ8jpOVvTzsjlnz+riiYZdX/7A23TbZqAeiEI7z48ppfra9aWzq7XTJ5GIXIFWIIvbLV6klDolIkOA90XkkFJq7UU7VOpJ3Kav7Oxsvz7pNuWVMS0t3vf2tb1BKd3JLNKPuSZ9ZOHYJF7dXsiB01VMGdGPA/ImT9YPUsMKKG7KKyM6PIRpaf34b9sHPDOvTbllfHa2UcaH3jFpEowfr+/fSwxvZyBb0QpkDvohfruI/K2Pxy5Ez2o8pKFnNhcgItOAPwE3KaXOGUSVUqfc78XAG2iTWNCoa2phd2FFYEeHHnJy4JFH4O23A3+sXuAJLe33durx4+HGG3WdIoPYmFtGdkYiYSEBNqu1tupe6YZ1yBufGkdC9CXiBwkJMao9gL/w9sq8Tyn1A6VUs1LqjFLqJuDNPh57K5AlIqNFJBz4ArCi/Qoikg68jo4GO9JueYyIxHk+A1cD+/ooT6/YcbyC5lYVHAUSH69jyA3LBxkaH0lmcsyl4Ug3jJLqRo4W1/i3PE53vPIKfPCB7ldhCOf8IMf68fXV1GRUzxV/01MeSCyAUuqiMFml1F/ar9NblFItwEPoHJODwCtKqf0i8qCIPOhe7QdAEvD7DuG6qcA6EdkNbAHeVkq964scvrIpT/s/skcNDvzBkpN1q9uaGigz62aal5nIlvxyWvurH2TnTti716hEOjg/qwuoA91DSMj56sOG5YMsyEyioLyewrP9tGzO1q3ws5/BBp+zHYympxnImyLyqIgsdY/0ARCRTBG5V0Q8CYY+oZRaqZQap5Qao5T6iXvZE0qpJ9yf71dKDXaH6p4L13VHbk13vyZ7tg0mHv9HTDD8HyLnw/8MyweZn5lEdUMLB09XOS1K71EK1qyB116DKrPk35hXRmxEKFOGDwrOAU29vjx+kP4ajZWfr9skx/o0zjaenvJAlgMfAv8A7BeRShEpA/6Kzkq/SynVV19IvyOo/g8PhsbrzxvtucHNmhl5xdmzWnFER0OKH1oR+5FNeWXMHZ1IaKD9Hx4MVSDjhsSRGBPeP6+v1tZLNv/DQ4/DZ6XUSmBlEGTpNwTV/+Gh/Q2ulDEhl0PjI8lIimZTXjn3L+lnTXI8D8tRo4z5ewIUVzeQV1LL57NH9ryyvxg+XIealpRAba02mRqAxw/SL/1sp09rH0hSkq6BdQni1fBGRBZ5TFgi8iUR+aWIjAqsaObi8X/MDob/w0NSkp4G19bqktAGMT8zia35/TAfxND6V1uCkf/RkZAQXVwRjJuFzM9M4mRFPQXl/cwPYuj15U+8nR//Aahz16L6DnAc+HPApDKcTXllTB0RpPwPDyLw6U/DV76ilYlBzMtMpLK+mYNnzPIjdEv7AoKG3eCb3P6PycHyf3jIyNABGwZF+kG7fJD+ZsbyXF+jLt2xtrcKpEXpsqs3Ab9WSv0aiAucWOZS39QafP+Hh/HjdfVUg8ptwHk/yOb+5OisqND1xaKjYcgQp6W5gM155cweNTh4/g8PS5bAQw/p0iYGkTUklsSY8HOZ+f2CtrbzrQEMG6D4E2+v0GoR+RfgTuBtdyHEsMCJZS47Tpx1+z8unZr+fWV4QhTpidH9a4RYX6+VsWHltUtrdP7HPCeuL4P+Du0REeZmJPav60sEHngAbrnlkvV/gPcK5PNAI3CvUuoMumbVIwGTymDO5X8Esv5VtwJsgmefNa6r2Xx3Pki/8YMMH67Ngbfe6rQkF+Dxf3hmdY5QWalnaAYxLzORwrP1/aculog2NU+b5rQkAcUrBeJWGs8D8SLyKaBBKTUgfSCb88qZEmz/R3tOnNDOOQMdnRV1zRwuqnZalN5h2Kh7c14ZUWEO1r/atAkee8y4xLfzZtJ+NAsZAHgbhXUbOuP7c8BtwGYRMWvoFgQamlvZVVDB/NEOmq8MbTA1L7Mf3eD19VBcbJyzGHQF3uyMwYGvf9UVw4bpd8OurwlD44iPCusffra2Nm0lWLXqki5jAt6bsL4PzFFK3aWU+jK6cOG/B04sM9l5ooKm1jZn7NMePA6548eNegCOSIhiZGJU/8gYPnwYfv97eOMNpyW5gLO1TRw6U808JwcoI0boysTFxbr+miG43G0TNveHuljFxVoBHzyow6MvYbxVIC531VsPZb3Y9pJh8zHd/9wx/wfoiKGoKDPt1KOT2JJfbn6fdM/o2jPaNgRPlNE8JyL8PISG6iZTYFxdrPmZieSX1VFUZVbdsosYAPkfHrxVAu+KyCoRuVtE7gbe5sLmTgOCzXnlTBo2iEGRDgagGdwnfe7oRMpr+0GfdEPzPzYf0/3PHe//0X6WaxD9pmxO+woHlzjeOtG/DfwvMA2YDjyplPpOIAUzjcaWVnacOOtsdIwHQ2/w+f3B0VlZqWtgRURAaqrT0lzA5rxyZqUPDlz/c28xdIAyafgg4iJCzc4HMThBNRB460QfDaxUSv2zUuqb6BlJRkAlM4w9hZU0tjjs//CQmQnTp8O4cU5LcgEjE6MYFh/JJpNvcM/NnZ5uVEJmZZ3O5DdigJKWpm33paW6lpMh6PD5wWbPQIqLdZDGoEGXXP/zzvA2FvVVYGG7763uZXP8LpGheEbVc530f3gYMgRuvtlpKS5CRBe+W5dThlIKMSxEFjB2dLg1vxylMGOAEhYG996rr7Mws/KF52UmseZwCcXVDQyJM6e98znaX18mXv9+xtshWKhS6txQxP05PDAimcnmY+VMGBrH4JgBddq9Zl5mEqU1jeSV1jotSueccndNNsw+vflYGeEhLmaMTHBaFM2IEcYpD+BchNoWU2e5w4bB3LkwcaLTkgQFbxVIiYjc6PkiIjcBfS4JKyLXishhEckRke918ruIyG/cv+8RkVnebutPmlvb2H78rLPhlR1pbIQDB3Q3PYOYa/oN/pWv6JdhEVhbjpUzY2QCkWGGhX0aFlE3dUQ80eEh5uaDjBwJ119vFUgHHgT+VUROiMgJ4LvAA305sLue1u+A64BJwO0iMqnDatcBWe7XA+iqwN5u6zf2nqykrqmVuSbYpz2Uluo+1mvWOC3JBWQmx5AcG2GuI93l0qNrg+Lzaxpb2HeqygzzlQel9PX1i1/owYohhIa4mD1qcP/IBxkAeBuFlauUmo9+WE9WSi1USuX28dhzgRx3e9om4CV0td/23AT8WWk2AQkiMszLbf2GZzQ916QZyLBhEB6ua2JVm1M+RESYl5nI5mMG5oOYJo+bbe6e8kY40D2I6Ii12looKHBamguYn5nEkaIaymvNcfADulvozp3GtUcurmrgvme3sqewwu/77lUYilKqRinlr6fVCKD9lVnoXubNOt5sC4CIPCAi20RkW0lJiU+CNrW0MSs9gZS4CJ+2Dwgul44kAuPCLeePTuR0ZQMF5YYVvvvjH3WJCcNu8M3Hygl1CbNGJTgtyoUY2ubWWD/Ijh3w5pu60oFBbDpWzoeHihH879R3Mo6xs7PpOETsah1vttULlXpSKZWtlMpO8bHv9cPLs3j9a4t82jageBzBhuWDeDKpN5lkZqir0w70wkLdA8QgthwrZ2paPNHhDhXo7ApDr69paQlEhLrMMmMpZWwC4ea8MuIiQpkUgAZlTiqQQqB90+c04JSX63iz7aWPoQmFY1NiGRxtWOE7z99o5EhdrsMQ6pta2VNYYZb5ykN6ujZlnTplVD5IeKiLWemDzbq+zp7VpuToaPBxoBooPAU6Q1yGzEBEJFtEOjUZ9YKtQJaIjBaRcOALwIoO66wAvuyOxpoPVCqlTnu57aXP8OE61LKkRNuqDcHlEuaONqzwnaGjQ0+DMqMc6B4iI2HoUF1RtrDQaWkuYF5mIgfPVFFZ1+y0KJr215dB+R+lNY3kFNcELADI1xnIN4C3RORlXw+slGoBHgJWAQeBV5RS+0XkQRF50L3aSiAPyAH+CHytu219laXfEhKiR4lDhxrlSAddt8ioBkCGJhBuzivDJZA9arDTonSOsX6QJJSCbccNmYUY2v/8XIOyAA1QfJrLK6XuAhCRPvVFV0qtRCuJ9sueaPdZAV/3dtsByR13GFWSw4Pngt2cV8Yts9KcFaa+HoqKtMId0deJs3/ZfKycycPjiXOyQGd3TJ6sy3KMHeu0JBcwMz2B8BAXm4+Vs3yiATXNDB6gRIeHMHVEYAp0elsLyyUiM0XkBhFZJiKpAH6MyLL4ioHKA2DC0EEMigw1w0594oR2cqalGZVd3dDcys6CCrMSVDuSlgYLFhhn148MC2HGyAQz8o2amiA+HmJjdfkXg9h8rJzZowLXoKzbGYiIjEEnDV4JHAVKgEhgnIjUoSv0PqeUaguIdBbvUErng8TF6dwQAwgxyQ8yYgTceKO26RvEroIKmlranO3/0Y+ZOzqRP3ycS01ji3MtpkHfc/fcozsRGjSg8zQo+9S0wFVd6Olsfwz8FRijlLpGKfUlpdStSqlpwI1APHBnwKSzeMcrr8Bvfwt5eU5LcgHzRieZ0QAoNhZmzYJJAStW4BOb88oRMaRAZ3eUlMDq1bB7t9OSXMC8zERa2xTb8g2Y5YJRygN0gU4IbIOybs9YKXW7Umqt6iSlWClVrJT6lVLquYBJZ/EOz7TZsHDe+Zn9pAGQQ2w+VsbEoYOIjzbHrNYpJSWwdi3s2uW0JBcwe9RgQl3ifH+QoiI9+zCMzcfKiQgNbIMyb30g/yUioe2+DxKRZwImlaV3GBopY0QDoBMn4J13jPvbNLa06gKdJobvdsQTWVRYqEN6DSE6PJRpafHO+kGqquAPf4Bf/9q4Ujmbj5UFvEGZ1+Xcgc0iMk1ErkbnYWwPmFSW3uFpAHTmDDSY0y/a0wDI0Rv88GHYvBlycpyToRM8Dcrm9wf/R0yMdqI3N8PJk05LcwHzMpPYU1hJXVOLMwJ4BiZDhhiV/1HV0MyBIBTo9LaY4r+gnembgWeBG5RSjwdQLktvCAvTjuL27TQNYV5mErkltZRUO1TR1eDwSugH/g8PhlY9mJ+ZREubYvvxs84IYOj1tS2/nDZFwCsceGvCWgr8GvgR8BHwuIgMD6Bclt5i6A3uaOG7piZdhsPl0iVMDKLfNSgztE/67FG6RIdj4eKev4dhCmRTXjnhoS5mpicE9DjemrB+AXxOKfXfSqkvAk8CqwMnlqXXeG5ww0pvT/E0AHIinLegQDs3hw2DCHMqKTe3trEt/2z/MF958DwgCwqM8oPERoQydUS8M4Ea1dVQVqbDeA1rULYpr4yZQWhQ5q0CWaCUOuD5opR6HTCwPO0AJj1d97G++26nJbmAME8DICdGiIaODvcUVlLf3Gp2AmFHYmNhzBidmW5QgynQ4by7CyuobwqyYvNcX+npRoXwVjU0s+9kZVDyi7o9axH5koi4lFIX/WeUUmUiMkZEFgdOPIvXhIXpC9mgTnse5mcmcbiomrKaID94DFUgntmYUQ3KvOHOO+Gmm4wrhz8/M4nmVsWOE0H2g3gKTBp2fXn8H/ODEOHXU/pmErBTRLajo648mehjgcvQfdED2o/c4gNKGRUR4jHVbDlWznVTgzTVV0r7PVpazjfeMoRNeeWMS40lKdYcs1p/JnvUYFyiAxMWjU0O3oGvvVYnqBqmUDfnlRMeokveB5puFYhS6tci8jiwDG2ymgbUoyvg3qmUOhFwCS3eU1EBb72l7f5f/rLT0pxjWpr2g2zKKwueAhGBq68OzrF6QUtrG9vzy50vMOkrtbV6ZjdhgjGz3bjIMLcfJMhmUhFINaCQYwc25ZUxIz3w/g/wohqv23z1vvtlMZmoqPPlTBobjXEch4W4yM5IZKPNSGfPyUpqm1r7lwO9Pc8+qzPT77vPqMi2eZlJPLs+n4bm1qA8OE2b5Xuobmhm78lKHlqWFZTjeRvGmyIi/yoiT4rI055XoIWz9JKICN1kqq1NZ2AbxPzMRI4U1VAaLD/IoUO6wKRh2cEbc7USDYZ9OiAYWvVgfmYiTa1twfODvPsuPPUUHDsWnON5ybb8s0Hzf4D3UVhvogsnfgC83e5lMQ1Db/AF7hF3UKKxmpp0gcnHHzeqFSto88L41Lj+6/8w9PrKzkjEJQTPjJWbq0OaDWqPDPr6Cpb/A7xXINFKqe8qpV5RSr3mefl6UBFJFJH3ReSo+/2isxWRkSKyRkQOish+EfnHdr/9UEROisgu9+t6X2W55PDc4IaNjKaMiCfG7QcJOCdOGJn/0dSi8z8WjOmn5is4n2904oRR+SCDIsOYEqx8kOpqKC3V+R/DzcqnDqb/A7xXIG/5+SH9PeBDpVQW8CGdR3K1AN9SSk0E5gNfF5H29bgfU0rNcL9sZ0IPnpj006eNqovl8YME5QY3NHx3T2EF9c2t/dd8BTofxFMX69Qpp6W5gAWZSew8cTbw+SDt8z8MCSSA8/6PYPrXvFUg/4hWIvUiUiUi1SJS1Yfj3gR4ysA/B3ym4wpKqdNKqR3uz9XoyC+z+pGaSHi4Lq5oYF2s+ZlJHC2uCXxdLEMVyMbcMkQCX58o4BhqxlowRueDBLwulmd2P3p0YI/TS4Lt/wDviynGKaVcSqkopdQg9/dBfThuqlLqtHvfp4Fu+0CKSAYwE13M0cNDIrLH7dDv0uAnIg+IyDYR2VZSUtIHkfsR8+bBDTcYV17BY7oJaFmTxsbz9a8My//YmFfGhKGD+k/9q67IyNARSNVmdbSek5FIqEvYkFsa2AMZOkDZkFsaVP8H9NzSdoJS6pCIzOrsd88MoYttPwCGdvLT93sjoIjEAq8B/6SU8sx6/gD8F6Dc748C93Yh45Po2l1kZ2ebFZITKCZPdlqCTpkyfNA5P8inpgXIduzxf4wYYZT/w9P/4455o5wWpe+MGwff/a5xLYJjInR/kICGi1dW6ui+iAjjBmgbcsuYNSp4/g/oOQ/kn4EH0A/ojih0gmGnKKWu7Oo3ESkSkWFKqdMiMgwo7mK9MLTyeN5df8uz76J26/wReKuH87AYQGiIizmjE8+FsgaEykodGWOYeWHniQoaW9r6twPdQ1iYfhnIwjHJge2THhkJt9wC9fVG1b86W9vEgdNVfPPKcUE9bk+Z6A+436/w83FXAHcBP3O/v9lxBRER4CngoFLqlx1+G+YxgQE3A/v8LF//p7AQDhyArCyjHqYLxyTx08MlFFU1kDooACPY7GyYMUOXMDGITXll/aP/eW9QSj9IDSrlsWBMEo+vyWHrsXKumNCtZdw3IiJg2jT/77ePbD5WhlL6/gom3iYSfk5E4tyf/01EXheRmX047s+Aq0TkKHCV+zsiMlxEPBFVi4A7gWWdhOv+XET2isge4Argm32Q5dIkNxc2bICDB52W5AIWjtG1igJqpw4NNc68sjG3jMnD+0H/c285dQoefRReftlpSS5g9qjBhIe4Au8HMYwNuWVEh4cwLS0hqMf1do7370qpV92Vd69B9wd5Apjny0GVUmXA8k6WnwKud39eB3RaK0Apdacvxx1QGBopM2nYIBKiw1ifU8bNM/1cD6q+XkehGRRaCdDQ3MrOExXctfAS8H94SEzUdbHq63WyZrgZgQGRYSHMTE8IjB+kogI++UTP6idM8P/++8CG3DLmZCQSHhpcs5q3R/MEVt8A/EEp9SZgxhVj6ZwRI7SdurhY3+iG4HIJCzKT2JBTivJ3mZHVq+F//gf27vXvfvvItvyzNLW2nZt9XRJERmoncmurcWVzFoxJYv+pKirq/FyFIC8Ptm+H3bv9u98+UlzVQE5xTdDNV+C9AjkpIv8L3AasFJGIXmxrcYLQ0PPF7gzLSl84NplTlQ3kl9X5d8fHjunRcHy8f/fbR9bllBLqkv7X/6MnMjP1u2nX15hklNJtg/2K5zyNC9/Vsy0nBijeKoHbgFXAtUqpCiAR+HaghLL4Cc8N7qnQawiL3COl9Tl+tFNXVZ0vLzHCrHzTDbmlzEofTEwgooKcxBOcYZgCmT4ynsgwl3+j/ZQ6f56e+8oQNuSWMigylEnD+5Ka5xveJhLWKaVeV0oddX8/rZR6L7CiWfpMewViUFXa0ckxDB0U6d8b3OPrGTXKKB9IRV0Te09WsnDsJRC+2xFPKY/Tp7UvxBAiQkOYk5Ho3wFKcTHU1EBcHCSbZYrckFvG/MwkQlzBLy9vzVCXMkOH6rIm48YZVfhORFg4NokNuaW0tflJsXlmWQaFLIMO31UKFgezU16wCAs7XzbHsGCNxWOTOVpcw5lKP9WD81xfmZlG9QEpKK+j8Gy9I/4PsArk0sblgvvvh+uvN67s9KIxyZyta+bgmb6UVHPT3rxgmAJZl1NKTHgI00cmOC1KYFi2TF9j48c7LckFLM7SCttvs5D2CsQgPOHKCx0aoFgFYnEET+/qDTl+MGOdPasz0KOi9KzLIDbklDEvM4mwkEv0Vhs1Ss9CDMrKBpg4dBBJMeGs85cCGTlS+9YMUyCfHC0lJS6CrCGxjhzfrP+6JTBUVsKuXbpGlCEMjY8kMyWG9f5I+Bo8GL7+dV1iwiDzwsmKevJKa88pS0vwcLmEhWOTWeevcPGlS+ErX9E+EENoa1OszyllydhkxKHr3iqQgcCzz8L//R+cOeO0JBewaEwyW46V09TSR8UmontUZAWnD7S3eMwniy5FB3p7Dh6E554zLv9mydhkSqobOVJU47QoAWH/qSrO1jWzZJxzAxSrQAYChobzLs5Kpq6pNXh9rIPMhpxSkmPDGZ9qzqg1IFRVaR/UkSNOS3IBi9x+kD6bsfbt01FYBkUyAqw9qttTODnDtQpkIGCoAlkwRocerj3Shz4tBQXw5JOweXPP6wYRpRTrc8tY5KB5IWiMGaPfc3ONesiOSIgiMzmGdUf7cH01NsLrr8MTT+gkVYNYd7SUCUPjGBLnXN03q0AGAp7IpBMndCtSQxgUGcas9AQ+OdqHEWJuri7sVxaEVrm94EiR7ry46FIqX9IVSUk6+7+uzjwz6dhkNvfFTJqfr32HaWlG9Zepa2ph2/Fylo5LcVQOq0AGAtHRum5RS4txdYuWZqWw71QlZTU+trnNzdXvnlGwIXx8RLe4cdI+HTRELpyFGITHTLrTVzOpoeG7m4+V09yqHM8vsgpkoOC5AQy7wZeMS0EpH+3UDQ2674nLZVx9oo+PlDA+NY5h8VFOixIcDFUg8zOTcEkf8kFycvS7YQrkkyOlhIe6HK+vZhXIQGHsWF12otHHkX6AmDoinoToMNYe8eEGP3ZM29xHjjTOvLD12FkuG++seSGoeDK0T5wwylcQHxXG9JEJfOyLmfTsWW0ajYzUJiyDWJdTwtyMxKC2r+0MR9KTRSQReBnIAPKB25RSF80xRSQfqEaXk29RSmX3ZntLO0aNgu98x6gHLUCIS1g8NplPjpaglOqdw9lQ89WmvDKaWtu4zGH7dFCJioLFi3VOjmFcPm4Iv/rwCGU1jSTF9uL698w+xowxKlHyTGUDR4pq+Ows55WaU3+V7wEfKqWygA/d37viCqXUDI/y8GF7C+gbwDDl4WFpVgrF1Y0cLqr2fiOlLrzBDeLjwyVEhYWQnWHewzSgLF8Os2YZ01zKw+XjtZm018EajY36nhk7NjCC+YjH3Osp1+IkTimQm4Dn3J+fAz4T5O0HLm1txkUseRzNvQ7nvfpqmDtXBwgYxMdHSlgwJomIUHOqAg9kpo6IJykmnI8OF/duw8WL9ax96tTACOYjHx0uJjk2golDg1++vSNOKZBUpdRp0KXhgSFdrKeA90Rku4g84MP2lvbU18Mjj+i8CYOq8w6Lj2JcamzvRogiMGmSLhRpkHkhv7SW/LK6gWW+ak9eHqxcqcvnGILLJSwdl8Laoz5Ufw4JMaoQaUtrG2uPlHD5+BRcDpRv70jA7jwR+UBE9nXyuqkXu1mklJoFXAd8XUSW+iDHAyKyTUS2lZT0IaHoUiAqCmJi9NS8sNBpaS5gSVYKm4+VU99kjmLzBU928IBVIFu3wpYtxmWlXz4+hfLaJvac9FKxlZUZlTPlYceJCqoaWlg2wYwxc8AUiFLqSqXUlE5ebwJFIjIMwP3e6dxSKXXK/V4MvAHMdf/k1fbubZ9USmUrpbJTUgboTd0eT70oj//AEC4fn0JTS9u58tTd0tQEb7wB+/cHXrBesvZICaOSoslIjnFaFGcYN06/Hz3qrBwdWJKVggjem7Fefhn+53+gqCiwgvWSNYeLCXWJEf4PcM6EtQK4y/35LuDNjiuISIyIxHk+A1cD+7zd3tIFHoegYTf4vNFJxISH8MFBL27wY8dg927YuDHwgvWCxpZWNuSWDdzZB5wfoOTlGTWCT4wJZ3paAmsOe2GFqKzUta9CQozrPrjmUDHZGYMZFBnmtCiAcwrkZ8BVInIUuMr9HREZLiIr3eukAutEZDewBXhbKfVud9tbvGDUKN1J7swZqO5F1FOACQ91sXRcCqsPFfVcfttjHjGs+u7WY2epa2pladYAViCxsTB8uK56YFiv9CvGD2FPYUXPVQ88s/PRo41qj3yyop5DZ6qNMV+BQwpEKVWmlFqulMpyv5e7l59SSl3v/pynlJrufk1WSv2kp+0tXhAaej5r2zAz1rIJQyiqamT/qW66FCp1fvbkMZcYwgcHi4gIddn+H4aasbwO5/XcF4aF73rMb1eMH+AKxOIwnhvcsLpYl48fggisPtSNGauoSJcPj4szqvugUooPDhaxJCuZqHBzRq2O4Lm+jhwxqjqvV+G8zc3nFYhhM9w1h4pJGxzFWIe6D3aGVSADkcmT4YEH4MYbnZbkAlLiIpielsCH3SmQ9uYrg8qkHy6qpvBsPVdOTHVaFOcZNkybSidN0qYsQ3C5hMvGpbDmcAktrV1U5z12TCuRYcN0hWFDaGhuZX1OGVeMH2JUewCrQAYi0dHaTm3QhejhyolD2F1QQXF1Q+creBSIaearAzpaZ9lEc8wLjiEC99wD11yj/W0GcfXkVCrrm9mS34XV2xPePmFC8ITygs3HyqlvbjXK/wFWgVgMipQBWDZBj+A/OtRJtIxSMH48pKcbVx31/YPFzBiZ4GhzH0vPLB2XQkSoi/f2dxGeu2wZPPwwzJ4dXMF6YLXbv7ZgjFntka0CGajU18PTT8NvfmOUnXrisDiGxUfy4aFObnARWLIE7r3XqHpLxVUN7C6o4KpJ1nx1ARUVOrGwrs5pSc4RHR7Kkqxk3j/QTbRfYqKOJjOEtjbFqv1FLB2X4nj13Y5YBTJQiYzUzujqaqOy0kWEZROG8MnRUhqa+0dWusdns9yary7k73+Ht9+Gw4edluQCrp40lJMV9Rw43SHaz7BWBx72nKzkTFUD1042J2jEg1UgAxURbQ4C427wKyemUtfUemFWelMTfPwxGFiO5oMDRaQNjmJ8apzTopjFpEn6/cABZ+XowPKJQ3AJF5ux/vQn+P3vdR8Qg3h33xlCXWLkAMUqkIGMx1F46JCzcnRg4dgk4iJDWbm3XX/to0dhzRpYscI5wTqhrqmFdTmlXDkx1ajoGCOYMEEPVPLydPdIQ0iKjSB7VCLvHWinQMrK9OCkqgoGOV/l1oNSilX7z7BgTBIJ0eaYbT1YBTKQSU/XpqzSUqNKvEeEhnDVxFTe23+GphZ3uKVnFDtxonOCdcLaI6U0trTZ8N3OiInR4bytrcYVV7x6cioHT1dRUO72z3hm4VlZRmWfHy2u4VhpLdcYaL4Cq0AGNiEh58NhDZuFXD91GFUNLdqM1dx8PqvZMAXy9t7TDI4OY16ms72pjcXz/zp40Fk5OuAJeDg3C/Fc/4aF77677wwicLWhARpWgQx0DL3BF2clExsRyjt7z+jWtU1NOnfFoJap9U2tfHiwiGunDCMsxN5KneK5vnJyjOqVPiophvGpcazaf0abrU6c0GV+DCtf8u6+M8xKH8yQQWaGh9urfqCTlQU33QR33OG0JBcQGRbC8olDWHXgDC2esu2GzT5WHyqmrqmVT08zqyOiUQwapGuvZWQYFc4LcO2UoWzNL6d8yw69YNw4o9o+nyir48DpKiOjrzxYBTLQCQ2FmTN1synDuG7KMKpqGijcuEsv8ET1GMLbe0+RHBvBvEyzkruM46679AAlIcFpSS7gxhnDUQr2rt6iF0yZ4qxAHVi1XweRmOr/AKtALO1pazMqqfDy8SkMdrWxTgZrh3+SOQ/q2sYWVh8q5vqpQwkxoLWo0RganTYmJZYpIwbxq9S58PnPG1c88a09p5g8fBDpSdFOi9IlVoFYNKtXw6OP6kY6hhAZFsKCaek8NmgqLV++q+cNgsgHB4toaG7jhqnWfOUVSulChSdPOi3JBdw4fTg7T9eSn5JuVN2u3JIadhdW8pkZI5wWpVusArFo6uqgthb27et53SBy/dRhlNU2sfGYWS1f3tpzmtRBEczJsNFXXrFtGzz3HHzyidOSXMCnJ+lWtyt2n3JalAv4v50ncYk2s5mMIwpERBJF5H0ROep+vyi0RkTGi8iudq8qEfkn928/FJGT7X67Pugncanhsf/u22eOGSs/n+VtpSSEC6/vMGfkWtXQzMeHS7h+6jBc1nzlHRMnalPWkSPmONOLixn25OM8UH2IN3ed7LkTZpBoa1O8sfMki8Ymk2po9JUHp2Yg3wM+VEplAR+6v1+AUuqwUmqGUmoGMBuoA95ot8pjnt+VUis7bm/pJenpuknT2bNwypDR2CefEPHGa3wlrop39p2musGMysHv7S+iqbWNT00ze3RoFLGxOkS2rc2cWe6+fdDUxIJR8eSW1F5cG8shtp84S+HZem6eabb5CpxTIDcBz7k/Pwd8pof1lwO5SqnjgRRqQONy6UZTAHv3OisL6Nj8vDwICWHhTUtpaG5j5d7TTksFwCvbCshIimZWeoLTovQvpk/X77t3OysH6Fm2+zqfed1iQl1ijBnr9R0niQoLMTr6yoNTCiRVKXUawP3eU5WwLwAvdlj2kIjsEZGnOzOBeRCRB0Rkm4hsKzGwEJ9RTJum33fvdr6T3J495/p/zMgaRmZKDH/b7nzV4LySGrYcK+e2OSNt7aveMn68zrM4edL5opj5+Xq2PWgQ8ZPGsXRcCit2naK1zVkzVmNLK2/vOcU1k1OJiQh1VBZvCJgCEZEPRGRfJ6+bermfcOBG4NV2i/8AjAFmAKeBR7vaXin1pFIqWymVnZKS0vsTGUgMH65bedbXn+8L7QRKnR+lTp+OiHDr7DS25p8lv7TWObmAV7YVEuISbp2V5qgc/ZKwsPOz3D17nJVl+3b9PmsWuFzcOjuN05UNrD3irGJbc6iYqoYWPtMPzFcQQAWilLpSKTWlk9ebQJGIDANwv3cXO3odsEMpda50plKqSCnVqpRqA/4IzA3UeQw4rrkG7r//fKl3Jzh9Wo9Qo6PPlZa4ZWYaLoHXdzg3C2lubeNv2wtZNmGIsaUljGf6dJ2dHu1gbkNtrS7dI6KTaNG1sZJjI3h+s7NW8td2nCQ5NoLFY5MdlcNbnDJhrQA8gf13AW92s+7tdDBfeZSPm5sBQ7xylwAZGZCW5mzy165d+n3q1HOVUYfGR7I4K4XXdpykzSEzw5pDxZTWNPL57JGOHP+SID0dvvlNWLDAORny8nSF4LFjIT4egLAQF5+fk8bqQ8Wcqqh3RKyTFfV8eLCIz84eQWg/qa3mlJQ/A64SkaPAVe7viMhwETkXUSUi0e7fX++w/c9FZK+I7AGuAL4ZHLEHGE71cBg6VGedz5p1weJbZ6dxsqKe9e0bTQWRl7cWMCQugsvHW1Ooz4g4n5k+dSo89BBceeUFi78wJx0FvLS1wBGxnt+kZz93zh/lyPF9wREvjVKqDB1Z1XH5KeD6dt/rgIvqVyil7gyogAOdhgZ4+WWdlf7P/xz8/gizZmnTQocHzTWTU0mODeeZ9fksyQruQ/xMZQNrDhfz4GVj+s3o0Gjq67UfYtIk3YM82CRfbCIamRjNZeNSeHnrCR5eNjao/+eG5lZe2lrAlRNTSRtsbumSjtg7wXIxERHnM9Od6hPSySg1IjSEL80fxepDxeQU1wRVnJe2nqBNwW3WfOUf3n8fPvgANm8O7nErKrr9+Y55oyiqajzX5z5YvL3nNOW1Tdy1MCOox+0rVoFYLkYEZs/Wn4N5g+fm6odKVdcJXV+aP4rwUBfPrD8WNLHqm1r588bjLJ8whIzkmKAd95JmrjvuZdcuaGwMzjGrq+Hxx+HJJ7sMU79ifApDB0Xy/OYTwZHJzZ835jMmJYaFY8wpGOoNVoFYOmf6dF3i/cQJOB6kyJT162Hdum4zlZNjI7h5xghe21HI2drgNCh6ZVsB5bVNPHj5mKAcb0AwdKhud9vYeD5oItBs3KgVR3y8bmPQCaEhLm6fm87aIyUcPlMdFLF2njjL7sJK7lqY0e9yi6wCsXRORATMm6c/B6MAXnGxjo4JD7/Ied6RexePpqG5jRe2BH6U2NLaxh8/yWP2qMG2cKK/mT9fv2/eHPj6a/X1uqAjwJIl3a765QWjiAkP4fE1wcmFem5DPrERodzSD3OLrAKxdM3cufqBnpMT+PpYmzbp9+nTIbL7HIvxQ+NYkpXMcxvyaWppC6hYb+89TeHZeh68zM4+/M748Xo2UF4Ohw8H9libN+uWumPH6oTZbhgcE86dCzJ4a8+pgPva8kpq+Pue03x+zkhi+0HmeUesArF0TXQ0ZGfrDOJA9gkpLdVmDJfr/Ki0B+5dPJri6kbe2Bm4xEKlFE98nEfWkFiWT+ip2o6l17hc5/NBVq8O3CyksfG8L6+H2YeH+5eMJiLUxe8DPAt57IOjhIe4+u0Apf+pPD/T3NxMYWEhDU7lPBhAZGQkaWlphHXWUGfxYli0CGIC6DxevVpXaZ092+uug5ePS2H6yAR++f4Rbpw+gqhw/4caf3ykhIOnq3jk1mm2bHugyM7WPrY5cwKXH7J9uzZhpafrlxckx0bwpXmjeGZDPg8vzwpI8MTB01X8ffcpvnb5GFLizOnF3hsGvAIpLCwkLi6OjIz+58DyB0opysrKKCwsZPTo0RevEOiSE2VlcOCAnuVcfrnXm4kI379+Irf970aeWpfHQ8v82460tU3xP+8eZkRCFDcZ3hWuXxMaqtvJBhKXS5tFlyzplZJ6YGkmf950nN9/lMPPb53ud7Eefe8IcZGh/MPS/jn7AGvCoqGhgaSkpAGpPEA/iJOSknqegbW1wdat/o/ISkqC++6D667T/Uh6wdzRiVw9KZU/fJRLSbV/Q0Ff2Hycg6er+P4NEwkPHfC3SfAIhCVg/nxdPsVdV81bhgyK5Itz03l9x0mOFvk3ImtXQQUfHCzigSWZxEeb00q3t9g7Awas8vDg1fnv2AFvvw1vvaXrCPmTkSN7jLzqiu9eN4GGljZ+/eERv4lTXtvEL947wsIxSVw3xfyeDJcEzc3w2mvw29/6T4m096lERPhkInto2VhiI0P5l9f3+q0Gm1KKn797iMSYcO5Z3Mmsvx9hFYjFO2bM0LOFkhIdT99Xmprg6NE+72ZMSixfnJvOi1sK/BYx88iqw9Q0tvDDGycP+MFF0AgNhcpKXf3gww/7vj+l4IUXtPO8zfdIveTYCL5//US2HT/Li1v9Ezb+0tYCNuSW8c0rs/pl5FV7rAK5BNi5cyf3339/t+s8/vjjPPPMM74fJDQUrneXKfv44x5LQvTIqlXw/PM6cbCP/OOVWcSEh/DPr+yisaVvs6O9hZW8tPUEdy3IYFxq70xqlj4goq+vkBBtKu1rWO+uXXqA8sknerDSB26dncbCMUn8bOUhiqr6Njs6UVbHf711gEVjk7hjXv8pmtgVVoFcAvz0pz/lG9/4Rrfr3HvvvfzmN7/p24HGjIEpU7S54e9/931kd+CAjowJDYWsvju/k2MjeORz09lTWMl/r/S9dldVQzP/9PJOkmIi+Ker/OuUt3jB0KGw3F1j9c03dekRX6io0LW2QPe36SGvqCdEhJ/ePJWm1jZ+uGK/z/tpbVN869VdhLiER26dfklE9vXv+VMg+OEPu/7t058+XyNq+3b9EPVlPx3485//zC9+8QtEhGnTpvHjH/+Ye++9l5KSElJSUnjmmWdIT0/n1Vdf5T//8z8JCQkhPj6etWvXUl1dzZ49e5ju7jf98MMPk5yczA9+8ANWrVrFT37yEz766COio6PJyMhgy5YtzJ3bh/5b11yjM8Zzc2HlSrjhht7Zlquqzv/drroKUlN9l6W9WJOHcu+i0Ty9/hjzMxO5dsqwnjdqR2ub4hsv7OR4WR1/vX8egyL7r2OzX7Nggb62cnPh//4PvvSl3l1f9fV6ZltXp53mU6b4RayM5BgeXp7FI6sO86dP8rh/SWav9/HUujy25p/ll7dNZ3hClF/kcho7A3GY/fv385Of/ITVq1eze/dufv3rX/PQQw/x5S9/mT179nDHHXfw8MMPA/CjH/2IVatWsXv3blasWAHAtm3bmNLuJvnZz37Gyy+/zJo1a3j44Yd55plncLn0vzk7O5tP+lqWJC4Obr9dzx7KynrnUK+r02Xi6+v1zKMviqwTvnfdBKanxfPtv+3pdevb/155kI+PlPCjm6YwP7N/FbS7pBCBz3xGh4/n5sLevd5v29qqr6+SEhgyBG691a+5JQ9eNobrpw7lx28f5LXtvUtgXbH7FP/z7mGunTyUm/tJu1pvsDOQjng7c5g9+/xspA+sXr2aW2+9lWR3f4LExEQ2btzI66/rHlp33nkn3/nOdwBYtGgRd999N7fddhu33HILAKdPn6Z9r/fo6Gj++Mc/snTpUh577DHGjDkfYz5kyBAO+aM8+8iRcPfdun+6t71CKivhL3/RWecJCfoh4WcHdXioi8e/OItP/XYdtz6xkT9+eTYz0wd3u41Siuc25POndce4a8EovjjPu0QzSwCJi4Obb9a+EE8PdW94/33Iz4fYWLjjjj6brjoS4hIe+/wMKuu38p3X9hAfFcaVk3qeQb+yrYDvvraHuRmJ/OK26ZdUYIYjMxAR+ZyI7BeRNhHJ7ma9a0XksIjkiMj32i1PFJH3ReSo+737p4TBKKV6vKA8vz/xxBP8+Mc/pqCggBkzZlBWVkZUVNRFORx79+4lKSmJUx3qVzU0NBAV5aepc1raeeXR0KBDfGu7GfV7stxTU3XeR4Ay20cmRvPqgwuICnfx+Sc38eauk12uW1HXxNdf2MEP/36AK8an8O+fmhQQmSw+kJWlZ7qea6yxsfvrC7T5a+RIrTzcrWr9TURoCP97ZzZThg/i6y/s4I9r87qsx9bWpnh63TG+87c9LB6bzLP3zO33UVcdccqEtQ+4BVjb1QoiEgL8DrgOmATcLiKeO/x7wIdKqSzgQ/f3fsny5ct55ZVXKCsrA6C8vJyFCxfy0ksvAfD888+zePFiAHJzc5k3bx4/+tGPSE5OpqCggIkTJ5KTc75ez/Hjx3n00UfZuXMn77zzDpvb9fM4cuTIBeYuv/Hhh3q0+Lvfwdq12kl+6hTs3AmnT+t1oqPhzjvhnnt6nTDYW8alxvHm1xczIy2Bf3xpF197fjtv7zlNbWMLrW2KnOIaXt1WwLW/+oT39hfx3Wsn8Ke75thOg6bhGVh5TFOPPQZ/+5s2bR0/riOtPvzwvBk1Ph7uvVfPjANIbEQoz9wzl0Vjk/nJyoNc+6u1fHCgiPLaJlpa22hobuWFzSe48pcf86O3DnDlxFT+dFd2QMrtOI1TLW0PQo8JbHOBHKVUnnvdl4CbgAPu98vd6z0HfAR8NzDSBpbJkyfz/e9/n8suu4yQkBBmzpzJb37zG+69914eeeSRc050gG9/+9scPXoUpRTLly9n+nQ9Ha6srKS6uprY2Fjuu+8+fvGLXzB8+HCeeuop7r77brZu3UpkZCTr16/nP/7jP/x/EgsXan9IXp6ua9WeGTO0uQoCNirsjMSYcP56/zwefe8wf9teyMq9Z4gIdRHiEuqa9AMnMyWGN768iKlpwZPL4gO1tbocSWur7hXTsV9MSMj5MjhBMg8lxoTz9N1zWHO4mP/6+wHu//O2c7+FuoSWNsXUEfH85vaZ3DB1GCGXQMRVZ4gKdB3+7g4u8hHw/5RS2zr57VbgWqXU/e7vdwLzlFIPiUiFUiqh3bpnlVKdmrFE5AHgAYD09PTZxzuU4jh48CATJ0700xk5w2OPPUZcXFy3uSA7d+7kl7/8JX/5y186/b3Pfwel4OBB3YDq7FkdShkVpf1EU6f6vl8/0Nqm2JpfzvsHimhtU0wZEc+UEYMYmxJrZx39iYoKPes4eFCbRBMSYPBg7ScZ6lzFgKaWNt4/UERxdQOV9c3UN7Vy+fghzM9MvGT8HSKyXSl1kbshYDMQEfkA6Oy/+n2l1Jve7KKTZb3WdkqpJ4EnAbKzs53TlgHkq1/9Kq+++mq365SWlvJf//VfgRNCBCZN0i/DCHEJ8zOTbHRVfychQc80elF0MxiEh7q4YVpgzWamEjAFopS6so+7KARGtvueBni8wkUiMkwpdVpEhgEBbFZhPpGRkdx5553drnPVVVcFSRqLxTJQMHn+vhXIEpHRIhIOfAFY4f5tBXCX+/NdgDczmi5x0oxnAgP9/C0Wi284FcZ7s4gUAguAt0VklXv5cBFZCaCUagEeAlYBB4FXlFKeOgI/A64SkaPAVe7vPhEZGUlZWdmAfYh6+oFE+jlm3mKxXPo46kQPNtnZ2Wrbtgv99bYjYQ8dCS0Wy4An6E70/kJYWFjnnfgsFovF0i0m+0AsFovFYjBWgVgsFovFJ6wCsVgsFotPDCgnuoiUAMd7XLFzkoFSP4rjBP39HKz8ztPfz6G/yw/OnMMopVRKx4UDSoH0BRHZ1lkUQn+iv5+Dld95+vs59Hf5waxzsCYsi8VisfiEVSAWi8Vi8QmrQLznSacF8AP9/Rys/M7T38+hv8sPBp2D9YFYLBaLxSfsDMRisVgsPmEViMVisVh8wioQLxCRa0XksIjkiEi/6r8uIiNFZI2IHBSR/SLyj07L5AsiEiIiO0XkLadl8QURSRCRv4nIIff/YoHTMvUGEfmm+/rZJyIviojx5ZtF5GkRKRaRfe2WJYrI+yJy1P3eaSdTU+jiHB5xX0d7ROQNEUlwSj6rQHpAREKA3wHXAZOA20XEvLZ7XdMCfEspNRGYD3y9n8nv4R/RZf37K78G3lVKTQCm04/ORURGAA8D2UqpKUAIuj+P6TwLXNth2feAD5VSWcCH7u8m8ywXn8P7wBSl1DTgCPAvwRbKg1UgPTMXyFFK5SmlmoCXgJsclslrlFKnlVI73J+r0Q+uEc5K1TtEJA24AfiT07L4gogMApYCTwEopZqUUhWOCtV7QoEoEQkFojnfHdRYlFJrgfIOi28CnnN/fg74TDBl6i2dnYNS6j13vySATehurY5gFUjPjAAK2n0vpJ89gD2ISAYwE9jssCi95VfAd4A2h+XwlUygBHjGbYb7k4jEOC2UtyilTgK/AE4Ap4FKpdR7zkrlM6lKqdOgB1fAEIfl6Sv3Au84dXCrQHpGOlnW72KfRSQWeA34J6VUldPyeIuIfAooVkptd1qWPhAKzAL+oJSaCdRivunkHG4/wU3AaGA4ECMiX3JWKouIfB9ton7eKRmsAumZQmBku+9p9IPpe3tEJAytPJ5XSr3utDy9ZBFwo4jko82Hy0Tkr86K1GsKgUKllGfm9ze0QukvXAkcU0qVKKWagdeBhQ7L5CtFIjIMwP1e7LA8PiEidwGfAu5QDibzWQXSM1uBLBEZLSLhaOfhCodl8hoREbTt/aBS6pdOy9NblFL/opRKU0ploP/2q5VS/Wr0q5Q6AxSIyHj3ouXAAQdF6i0ngPkiEu2+npbTj4IAOrACuMv9+S7gTQdl8QkRuRb4LnCjUqrOSVmsAukBt7PqIWAV+qZ5RSm131mpesUi4E70yH2X+3W900INQL4BPC8ie4AZwE+dFcd73DOnvwE7gL3o54Yx5TS6QkReBDYC40WkUETuA34GXCUiR4Gr3N+NpYtzeByIA953389POCafLWVisVgsFl+wMxCLxWKx+IRVIBaLxWLxCatALBaLxeITVoFYLBaLxSesArFYLBaLT1gFYrFYLBafsArEYrFYLD5hFYjF4iAiMsfd1yFSRGLcPTemOC2XxeINNpHQYnEYEfkxEAlEoWtm/bfDIlksXmEViMXiMO4aa1uBBmChUqrVYZEsFq+wJiyLxXkSgVh0fSPjW8VaLB7sDMRicRgRWYEuVT8aGKaUeshhkSwWrwh1WgCLZSAjIl8GWpRSL4hICLBBRJYppVY7LZvF0hN2BmKxWCwWn7A+EIvFYrH4hFUgFovFYvEJq0AsFovF4hNWgVgsFovFJ6wCsVgsFotPWAVisVgsFp+wCsRisVgsPvH/AYfOUpl/WwW4AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# funkce cos()\n", "y1 = np.cos(x)\n", "\n", "fig, ax = plt.subplots()\n", "ax.plot(x,y)\n", "\n", "# vykreslime funkci cos()\n", "ax.plot(x,y1, color='red',linestyle='dashed',linewidth=2,label='cos(x)',alpha=0.5)\n", "\n", "\n", "ax.set_xlabel('x')\n", "ax.set_ylabel('sin(x), cos(x)')\n", "ax.set_title('Grafy funkci sin(x) a cos(x)')\n", "ax.legend()" ] }, { "cell_type": "markdown", "id": "bba2d973", "metadata": {}, "source": [ "Na závěr obrázek uložíme příkazem `savefig()`:" ] }, { "cell_type": "code", "execution_count": 41, "id": "b1f2d97d", "metadata": {}, "outputs": [], "source": [ "fig.savefig(\"obrazek.png\", dpi=300)" ] }, { "cell_type": "markdown", "id": "0e1500cd", "metadata": {}, "source": [ "### Visualizace závislosti dvou proměnných" ] }, { "cell_type": "markdown", "id": "4a562496", "metadata": {}, "source": [ "Mějme funkci $z(x,y)$, která závisí na dvou proměnných $z(x,y)=\\exp(-\\sqrt{x^2+y^2})\\cos(2x)\\sin(2y)$, a vykreslíme její závislost v 2D grafu." ] }, { "cell_type": "markdown", "id": "c37b2d03", "metadata": {}, "source": [ "Vytvoříme mřížku $x\\times y$ pomocí funkce `meshgrid()`:" ] }, { "cell_type": "code", "execution_count": 42, "id": "83a35717", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAANQklEQVR4nO3cX4il9X3H8fenuxEak0aJk5DurmRb1pi90KITI6VpTUObXXuxBLxQQ6QSWKQx5FIpNLnwprkohKBmWWSR3GQvGkk2ZRMplMSCNd1Z8N8qynSlOl3BNYYUDFRWv704p51hnHWenXNmZp3v+wUD85znNzPf+TH73mfPznlSVUiStr7f2ewBJEkbw+BLUhMGX5KaMPiS1ITBl6QmDL4kNbFq8JMcSfJakmfPcz5JvptkPsnTSa6b/piSpEkNucJ/GNj3Huf3A3vGbweB700+liRp2lYNflU9BrzxHksOAN+vkSeAy5J8YloDSpKmY/sUPscO4JUlxwvjx15dvjDJQUb/CuDSSy+9/uqrr57Cl5ekPk6ePPl6Vc2s5WOnEfys8NiK92uoqsPAYYDZ2dmam5ubwpeXpD6S/OdaP3Yav6WzAOxacrwTODOFzytJmqJpBP8YcMf4t3VuBH5TVe96OkeStLlWfUonyQ+Am4ArkiwA3wI+AFBVh4DjwM3APPBb4M71GlaStHarBr+qblvlfAFfm9pEkqR14SttJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJamJQ8JPsS/JCkvkk965w/iNJfpLkqSSnktw5/VElSZNYNfhJtgEPAPuBvcBtSfYuW/Y14Lmquha4CfiHJJdMeVZJ0gSGXOHfAMxX1emqegs4ChxYtqaADycJ8CHgDeDcVCeVJE1kSPB3AK8sOV4YP7bU/cCngTPAM8A3quqd5Z8oycEkc0nmzp49u8aRJUlrMST4WeGxWnb8ReBJ4PeBPwLuT/J77/qgqsNVNVtVszMzMxc4qiRpEkOCvwDsWnK8k9GV/FJ3Ao/UyDzwEnD1dEaUJE3DkOCfAPYk2T3+j9hbgWPL1rwMfAEgyceBTwGnpzmoJGky21dbUFXnktwNPApsA45U1akkd43PHwLuAx5O8gyjp4DuqarX13FuSdIFWjX4AFV1HDi+7LFDS94/A/zldEeTJE2Tr7SVpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDUxKPhJ9iV5Icl8knvPs+amJE8mOZXkF9MdU5I0qe2rLUiyDXgA+AtgATiR5FhVPbdkzWXAg8C+qno5ycfWaV5J0hoNucK/AZivqtNV9RZwFDiwbM3twCNV9TJAVb023TElSZMaEvwdwCtLjhfGjy11FXB5kp8nOZnkjpU+UZKDSeaSzJ09e3ZtE0uS1mRI8LPCY7XseDtwPfBXwBeBv0ty1bs+qOpwVc1W1ezMzMwFDytJWrtVn8NndEW/a8nxTuDMCmter6o3gTeTPAZcC7w4lSklSRMbcoV/AtiTZHeSS4BbgWPL1vwY+FyS7Uk+CHwWeH66o0qSJrHqFX5VnUtyN/AosA04UlWnktw1Pn+oqp5P8jPgaeAd4KGqenY9B5ckXZhULX86fmPMzs7W3NzcpnxtSXq/SnKyqmbX8rG+0laSmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmBgU/yb4kLySZT3Lve6z7TJK3k9wyvRElSdOwavCTbAMeAPYDe4Hbkuw9z7pvA49Oe0hJ0uSGXOHfAMxX1emqegs4ChxYYd3XgR8Cr01xPknSlAwJ/g7glSXHC+PH/l+SHcCXgEPv9YmSHEwyl2Tu7NmzFzqrJGkCQ4KfFR6rZcffAe6pqrff6xNV1eGqmq2q2ZmZmYEjSpKmYfuANQvAriXHO4Ezy9bMAkeTAFwB3JzkXFX9aBpDSpImNyT4J4A9SXYD/wXcCty+dEFV7f6/95M8DPyTsZeki8uqwa+qc0nuZvTbN9uAI1V1Ksld4/Pv+by9JOniMOQKn6o6Dhxf9tiKoa+qv558LEnStPlKW0lqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSE4OCn2RfkheSzCe5d4XzX07y9Pjt8STXTn9USdIkVg1+km3AA8B+YC9wW5K9y5a9BPxZVV0D3AccnvagkqTJDLnCvwGYr6rTVfUWcBQ4sHRBVT1eVb8eHz4B7JzumJKkSQ0J/g7glSXHC+PHzuerwE9XOpHkYJK5JHNnz54dPqUkaWJDgp8VHqsVFyafZxT8e1Y6X1WHq2q2qmZnZmaGTylJmtj2AWsWgF1LjncCZ5YvSnIN8BCwv6p+NZ3xJEnTMuQK/wSwJ8nuJJcAtwLHli5IciXwCPCVqnpx+mNKkia16hV+VZ1LcjfwKLANOFJVp5LcNT5/CPgm8FHgwSQA56pqdv3GliRdqFSt+HT8upudna25ublN+dqS9H6V5ORaL6h9pa0kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNDAp+kn1JXkgyn+TeFc4nyXfH559Oct30R5UkTWLV4CfZBjwA7Af2Arcl2bts2X5gz/jtIPC9Kc8pSZrQkCv8G4D5qjpdVW8BR4EDy9YcAL5fI08AlyX5xJRnlSRNYPuANTuAV5YcLwCfHbBmB/Dq0kVJDjL6FwDA/yR59oKm3bquAF7f7CEuEu7FIvdikXux6FNr/cAhwc8Kj9Ua1lBVh4HDAEnmqmp2wNff8tyLRe7FIvdikXuxKMncWj92yFM6C8CuJcc7gTNrWCNJ2kRDgn8C2JNkd5JLgFuBY8vWHAPuGP+2zo3Ab6rq1eWfSJK0eVZ9SqeqziW5G3gU2AYcqapTSe4anz8EHAduBuaB3wJ3Dvjah9c89dbjXixyLxa5F4vci0Vr3otUveupdknSFuQrbSWpCYMvSU2se/C9LcOiAXvx5fEePJ3k8STXbsacG2G1vViy7jNJ3k5yy0bOt5GG7EWSm5I8meRUkl9s9IwbZcCfkY8k+UmSp8Z7MeT/C993khxJ8tr5Xqu05m5W1bq9MfpP3v8A/gC4BHgK2Ltszc3ATxn9Lv+NwC/Xc6bNehu4F38MXD5+f3/nvViy7l8Y/VLALZs99yb+XFwGPAdcOT7+2GbPvYl78bfAt8fvzwBvAJds9uzrsBd/ClwHPHue82vq5npf4XtbhkWr7kVVPV5Vvx4fPsHo9Qxb0ZCfC4CvAz8EXtvI4TbYkL24HXikql4GqKqtuh9D9qKADycJ8CFGwT+3sWOuv6p6jNH3dj5r6uZ6B/98t1y40DVbwYV+n19l9Df4VrTqXiTZAXwJOLSBc22GIT8XVwGXJ/l5kpNJ7tiw6TbWkL24H/g0oxd2PgN8o6re2ZjxLipr6uaQWytMYmq3ZdgCBn+fST7PKPh/sq4TbZ4he/Ed4J6qent0MbdlDdmL7cD1wBeA3wX+LckTVfXieg+3wYbsxReBJ4E/B/4Q+Ock/1pV/73Os11s1tTN9Q6+t2VYNOj7THIN8BCwv6p+tUGzbbQhezELHB3H/grg5iTnqupHGzLhxhn6Z+T1qnoTeDPJY8C1wFYL/pC9uBP4+xo9kT2f5CXgauDfN2bEi8aaurneT+l4W4ZFq+5FkiuBR4CvbMGrt6VW3Yuq2l1Vn6yqTwL/CPzNFow9DPsz8mPgc0m2J/kgo7vVPr/Bc26EIXvxMqN/6ZDk44zuHHl6Q6e8OKypm+t6hV/rd1uG952Be/FN4KPAg+Mr23O1Be8QOHAvWhiyF1X1fJKfAU8D7wAPVdWWu7X4wJ+L+4CHkzzD6GmNe6pqy902OckPgJuAK5IsAN8CPgCTddNbK0hSE77SVpKaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrifwHXe3WluIZOawAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "osa_x = np.linspace(-2, 2, 50)\n", "osa_y = np.linspace(-2, 2, 50)\n", "(x,y) = np.meshgrid(osa_x,osa_y)" ] }, { "cell_type": "markdown", "id": "acb7ce7e", "metadata": {}, "source": [ "Spočítáme hodnoty funkce $z(x,y)$:" ] }, { "cell_type": "code", "execution_count": 43, "id": "18bb8b31", "metadata": {}, "outputs": [], "source": [ "z = np.exp(-np.sqrt(x**2+y**2))*np.cos(2*x)*np.sin(2*y)" ] }, { "cell_type": "markdown", "id": "28340d59", "metadata": {}, "source": [ "2D graf vykreslíme pomocí funkce `pcolor()` s parametrem `shading='auto'`:" ] }, { "cell_type": "code", "execution_count": 44, "id": "1f1c4670", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD6CAYAAABHy/uSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlTklEQVR4nO2de6xkV5Xev6/qPvpl6LGN3w04SiuKiULGsgyEKPGIR+wWiocRRCZSsEiklhGWZqQoiieWZqSRIs0kEkoYGJwWYw2WEM4fg3ErNAMGTeThDzNuLNvYGIYeYuKmO9jY0O5336pa+aMKdNM+66tbu3afW+3z/aRWV5199tn77HN27XvWd9ZajAgYY4zpJr3N7oAxxpjNw4uAMcZ0GC8CxhjTYbwIGGNMh/EiYIwxHcaLgDHGdJi5FwGSu0j+JcnnSD5L8rcb9iHJT5E8RPJpkjfO264xxpj5WapwjAGAfxcRT5C8BMB3SD4SEd9bt89tAHZP/r0DwGcn/0v6O7bH0mWXNpQkvg2csefzULut2u4a8nii8yX9EHWojle7rZrttE3S+dLLWFIn1PEqt1V2IQtZ9Lla1E5+Uuf+z+GfRcSbNtrM3ItARBwFcHTy+TjJ5wBcC2D9InA7gAdi7Jn2GMmdJK+e1M07d9mluPp3X/NgAfRmXwQiqzOlHrMy+etWgJiB0p9v1FyPI1FnmLfFgjIO8qbU8XpJPQ7V8WYvk2NRuoBlhyv8IY3kmTz6ok5B2UjM+OjnJxxJPVlHlEHVy+wTYg6n8xRoba7Kearus2QOy0UgqwPgxx//9z8WNV9DVU2A5FsB/DqAb59XdC2AF9Z9PzzZZowxZhOptgiQ3AHgzwH8TkS8en5xQ5XGdY7kXpIHSR4cnjhRq3vGGGMaqLIIkFzGeAH4QkR8qWGXwwB2rft+HYAjTceKiH0RcVNE3NTfsaNG94wxxiTMrQmQJIA/BfBcRHwy2W0/gLtJPoixIHxsmh7wK5qeF1LDqzCiSWOtsE8WHE/ZJ4vi9ZXYrdX51hZrC4W3tIvqeOrPloK+K3Nx0bUqFF5TTUCcrzxedSE3a6i0TMyfZODV9ZCXKmmrzXlaNB9L5/CM1Hg76N0A/jWA75J8crLtPwJ4MwBExH0ADgDYA+AQgFMAPlahXWOMMXNS4+2gb2Hay2Djt4I+MW9bxhhj6mKPYWOM6TBeBIwxpsPU0AQuLE0CSOb80xNi00ipq8JRq0Asq+1QKH1dShxNilTDQlTns3EvFH9T56lCAXARnMWKRfK2nBwVUtgU/cgcIAubSuvMXkVS7B2fdb7QyXFW/CRgjDEdxouAMcZ0GC8CxhjTYRZbEwgk9rLEIKZsaDLCVOVq0gOpsvEydTTJq7QY+666c5fuSLK91JmtuCMFbRVoAtKRrLLzWQlyGsi5mlUqc9DMK7U4T0vqtaTr+UnAGGM6jBcBY4zpMF4EjDGmwyy2JoAkIUiBAbDYhFZkQK9sXC3ofPWMXrIx0ZT8MyMJFCbq6POa3WdiUV6bL3mvv+R48nq0mIErTaSC0uB3F+c8BQq7bj8BY4wxNfAiYIwxHcaLgDHGdBgvAsYY02EWXxhuzCxWcBxRpvWcFoOtFdCmsJlSO2haaQapkhujzfFr81Zqqa3i+0+JxlkVz9MLgp8EjDGmw3gRMMaYDlNlESB5P8kXST6TlN9C8hjJJyf/fq9Gu8YYY+ajlibwZwA+DeABsc9fRcQHZjpqoDnBRGX7Wm+B7XXTKHOsKS1LnLtqm2OVjlDQvwU3F49Jg4iJoGktOgSmbcnEMeKABf3r3DxVVDxelSeBiHgUwCs1jmWMMaY92tQE3kXyKZJfJfm2bCeSe0keJHlwePJki90zxpju0dYi8ASAt0TE2wH8MYAvZztGxL6IuCkibupv395S94wxppu04icQEa+u+3yA5J+QvDwifjatbmMAudqJVErtmm0huscSO31BMpJp/UiP1xcDmLUljL+yf0k9KmNym3qBTLKSJRsXHVSJWdLj5VU4rJtIpXHubqQftfWHtiiYp4A4rVLtbkZaeRIgeRU5Dv1J8uZJuy+30bYxxpicKk8CJL8I4BYAl5M8DOD3ASwDQETcB+BDAD5OcgDgNIA7ImIR1m5jjOk0VRaBiPjIlPJPY/wKqTHGmAXCHsPGGNNhFjqAHAPgsKEgUVKUECVFqgKnltoBoYqyTgFpljUloEqxVpAdU4q1fXG8peaLwqW8f0rk7WXHU3VEmRLzMkJcyJHKppWUjQZicNXxBskcEcdTBtrGeYgpcy6pMy4TTnDZMQudz1qbqwXzFCicVxVPyk8CxhjTYbwIGGNMh/EiYIwxHWahNQEAjXbPXmZrLHFAQaFeUNkGWaoJRGZzV45Jwj5ZFKVLOXcJ/YHLzWW95dyYvKTKlprLlvr5BVZltTWBwTD/mysrGwxyUWWwlpeN2Fym3syW8yCz4ashEpqF1AuSfqg6bc7HdPqUJFAC0t8tKjmoX89bzE8CxhjTYbwIGGNMh/EiYIwxHWaxNYFotv+ntsGC95wBoTEAub2udkKPQntiJP0biSvbE20NxXv9+QHzIibv7gO57X95dZDW2bKylpZtXW6ut2Upr7PcFxpDTxnJmxmM8sFYE4N7ZrDcuP30Wn4hz/Sa6wBAdsYjafcvuPgqPqD0ExD1kstfoiMAqD8fszJpwxdtFeh6Nf9695OAMcZ0GC8CxhjTYbwIGGNMh/EiYIwxHWaxhWGgWZhNBJNMUAKmBbOavWzRhWGFSlZFUTjKTloNhnAWyxy/tq7mQu6O1bNp2RtXzjTXWT6X1tnSF6KxfGOgmTWhAJ4Z5kLuibWVxu3H+lvSOsrnLwtId04FpJPZr5qP1yt0CFNztZdckkUXhlPHTWgfzMx/T73cIbPKzYifBIwxpsN4ETDGmA5TZREgeT/JF0k+k5ST5KdIHiL5NMkba7RrjDFmPmppAn+GcfrIB5Ly2wDsnvx7B4DPTv6fSpOZMrXTK5uhskGWBLNSNrkSe11JkDgAo8xMr5Z3ddVLgm2JtvrCWWw50QS2r+Q2/Mu2nErLLl092bh95/LptM6Ofq4xbMmM04IzI2H3H66mZb9Y2tq4XTmsqWB1a0ngORV0btjLy9KWShO9FMzVUuezIk1A6XBZEhjRTjZPFUrzkQlsZqTKk0BEPArgFbHL7QAeiDGPAdhJ8uoabRtjjCmnLU3gWgAvrPt+eLLNGGPMJtLWItD08NL4gERyL8mDJA8OTzY/3htjjKlDW34ChwHsWvf9OgBHmnaMiH0A9gHAlmt2RZPtvSTpRKk9MSuTr5BXfi9Z2ROzVTyUz4S46kX5q1Uid5G0ZTUJ+LZjJbfT71zJ7ftXrh5v3H75cvN2ANjZzzWGbb1cm8g4NWp+3x8AfjHclpatJi/Oj4TgcmaYX8jTa83axNl+XmdYkFBIJmuqrNGV6nrV52MmnSg/AdFU5mohdb2L0E9gP4CPTt4SeieAYxFxtKW2jTHGJFR5EiD5RQC3ALic5GEAvw9gGQAi4j4ABwDsAXAIwCkAH6vRrjHGmPmosghExEemlAeAT9RoyxhjTD3sMWyMMR1m8QPINTmLVXbgKhGUS51TMiFN+P3I4FOpqCREqtrB75RTS08EkFtdSoRhEfDt0pX8jbErl19t3H7N8s/z4/VPpGVbWOAsFrmz2CW9HWlZPxn4syKK2IlB7nz2ajK26npI56SMgnsd0HM1fRmjNEBkwZxTwnD2l7OMYSeDNs62HdCOabPiJwFjjOkwXgSMMabDeBEwxpgOc1FqAqkdstQ+WWC7lDbN2tGiKtsTZVltZzFxwOV+syF3Wz/XBN64lDuLXb7UrAlctXQsrXOpcBbbLoWfZk6KaH8r4njnknrHhs2B5QA9TtnYqushxaeEYrt/QVn5Pd3cSSUJRG/2+aicu9Q4pfb92omrEvwkYIwxHcaLgDHGdBgvAsYY02EWXxNogxLbW+137UUllTykrf6V0hNJUbJE7ltF8vcd/eZk8gDwhqRsZy/XEd4k+reN+Tv/aR0RuW8UeT9+kfRdna8ap2xs1fWoTuk9WKT5KaO7aKukTsmcW2D8JGCMMR3Gi4AxxnQYLwLGGNNhvAgYY0yHsTAMaK+RrKww+NTFKh5dCDLHpZ7w/FkWDldb2Ow8tU2kndom0qzt6G1Jy1JGuZC7TURAy/quzleNk3QKM2NK53DJb8IC4ycBY4zpMF4EjDGmw3gRMMaYDlMrx/CtAP4bgD6Az0XEH55XfguAhwH878mmL0XEH2zs4A3bkqUrxJIm/a1UvaxMmlwLnLuUPVEt1bU1ixYZyawe7dAvyqTS3vFKWYSxrW5zV/O0xKGy8m9C9d+fknlfwNyLAMk+gM8AeB+AwwAeJ7k/Ir533q5/FREfmLc9Y4wx9ahhDroZwKGI+FFEnAPwIIDbKxzXGGPMBabGInAtgBfWfT882XY+7yL5FMmvknxbdjCSe0keJHlweCrPJ2uMMWZ+amgCTdap861wTwB4S0ScILkHwJcB7G46WETsA7APALZcuyua7GWZDU0ldRC5PqR5P8sPI1fPAntdsWaRnFeRzjGlH3mlvGg0yhtbGzV3/vRwJa1zapSXnRw1J14/lbQDAKfEu/u9gr+RTokAcqofed/z81XjlI2tuh4lPizVtTbk97TK1SRzMpWcl+hfdhnlb4woK9I4K77SU+NQhwHsWvf9OgBH1u8QEa9GxInJ5wMAlkleXqFtY4wxc1BjEXgcwG6S15NcAXAHgP3rdyB5FTleq0nePGn35QptG2OMmYO5zUERMSB5N4CvYfyK6P0R8SzJuybl9wH4EICPkxwAOA3gjggVANwYY0wbVPETmJh4Dpy37b51nz8N4NM12jLGGFOPxQ8g1yD4pM4aSnxR4uVszY9RhrSSrES1HVfElZWiUomoPcorDYd5Y2fWmjN3nRg0i6QA8PO17WnZS/03NG6/pJcHdevxeFp2CfN6GcfFTfjicEda9tKgue/qfNU4ZWOrroe6jmlJ6X0r7s9RMiGl+KsmcYmDpijLtPVSYbjk5Y6azmIOG2GMMR3Gi4AxxnQYLwLGGNNhFl4TkHb+85C2fWVPFEshM3udaEzaJwsocqxRmoCyT5b8WaA0gYHSBJo7+cqZrWmdbf03pmVZApah+Fvn+ChPHKO0hJLj/d/BzrTsJ2d/rXH70TP5+apxysZWXQ91HTNK7k1A358ZIr9Ou3OuxLmrRBModT6bET8JGGNMh/EiYIwxHcaLgDHGdBgvAsYY02EWWxhmc8S+NNmXEn+FkKIEp8zRRAlRJVELFSWRGqWzmBSG885n58Vh3sHRWt7Y6TPNUTBfEQOoMkidSqJqviwcrn6y3CzIAsC2/rm0bNY+TOvHS2cvaa5zelta5+enc2E4G1t1PdR1zC6Jul+iL+6LfJjyKMELPuek45yacwWZ1ERA2pnxk4AxxnQYLwLGGNNhvAgYY0yHWWhNIAhE/7XGvjQ5kgqApbISlQSeK7RBprbV0oBQtbMSlfxZIDSVOCcyi6E5yNlx5WB2rrkOkNvIf7KcO1xtXc7t/luW8ixhGWcG+ZQ6vSayhCXOXep8187mbWW2f3U9pDaWoezW4telxEFTeoMKqs+5rF5pML1UExB6iwPIGWOMqYEXAWOM6TBeBIwxpsMstCYANL/vniemnP0d9+kdKKy32Sj7ZGEyjbSKer/8TF4W55rLRv1cpDnby23kZ3rNwduONehKv0Im7ii4+GpwhU07kjGkCuqmyhL7fk/VKTldZeteLpyPr8M5pyiy7y+aJkDyVpI/IHmI5D0N5ST5qUn50yRvrNGuMcaY+Zh7ESDZB/AZALcBuAHAR0jecN5utwHYPfm3F8Bn523XGGPM/NR4ErgZwKGI+FFEnAPwIIDbz9vndgAPxJjHAOwkeXWFto0xxsxBjUXgWgAvrPt+eLJt1n0AACT3kjxI8uDw5MkK3TPGGJNRQxhukijOl3Y2ss94Y8Q+APsAYPXNu6LJWayEUueKmk4ZbXIhhLdMpJSBvZSDT3Y8JTQXtFXeP1GWUeikV5StSmaySi5yqRNhcklK56cM0PZ6nHOKTRbCazwJHAawa9336wAcKdjHGGNMy9RYBB4HsJvk9SRXANwBYP95++wH8NHJW0LvBHAsIo5WaNsYY8wczG0OiogBybsBfA1AH8D9EfEsybsm5fcBOABgD4BDAE4B+Ni87RpjjJmfKs5iEXEA4x/69dvuW/c5AHxi5gMnAeRSR4lCxx9tC80yqYg66nCZbbXULpg5/xTY4gGAg9lPjCLOWj9xCAOA3lqyXeRy6Z/Ny7J6KjdM/1w+8L3Z48fJoGnDlXwsslw0KvnKcFX0I2lrlPvaYbgi5khWT9n2l5STXsF8FHUU1edcFpBOiBlSe8rqyTqibEYcNsIYYzqMFwFjjOkwXgSMMabDLHwAOTTEEsvfgRYBqwrLMpunPF7lrNfK1hiZfV+8ax8iaYuyQ2bv76v3+jO7PwD0TzVvXzqd11k+mY/t8qnmsuWT+Uktnc4zqXBtdkeBWM7HdrA1D4y3tr253tq2fGzXtudlgywHfZ63HiORGD4LBicTzQtNgEv52DKZ3ws/51QXhA6XHk9pd2LOzYqfBIwxpsN4ETDGmA7jRcAYYzqMFwFjjOkwiy0MMxpF4Ew4Qn92sQkAeqKMveZj9kqF5gJS4QjAcNi8jo+U+KsY5OJlJnz1cm1VOn4tnWnevnIiH7/VY/k1Xnm12btr6Xjeid7J3PuMZ2f3FovVfEotbc+9u5YuafYK678hPx6Vl2PiIdWUqe+XiKRtGGWXRHVBib/LeVkvqddX87vFOTdKymKUD8ZICblZWTK3gbox5/wkYIwxHcaLgDHGdBgvAsYY02EWWxNAYstPbIOZLXFqmdAE+okmsKTsk8JxJStTzilDYWvMtAnho4Whsk+W2FaVg5kMLte8fem0cAg7kQsQS8eaD9j/hchQdzLxWAMQZ0W0ugSu5nb//lnlqZX0oaeCzomy1eaygZI5ipLolAWJU/Nxebn5GitNIJunQNmcU2WDxFY/TIUTgOI6jpjoemkNgBX/fveTgDHGdBgvAsYY02G8CBhjTIdZbE2AaLQrZu8El/oCLPVzO/PyUnOZ0gT6BcGsVIKLoXgffI3N7/WPhE1ztCbePy6IS6VOVyVm6a01V+yfFRrNmfxa9U4nNvxTeUS6OH4iLRudmV0T6G3J1Rhm2U0A9BL/gv7WfIr2z+Y+HdnY9kTSoKIYbOJ+Ue/u95UmkMy5bDsA9EXWFjHsKUMxEXq9JNif8LEZNEXCnBDJ5KfQGLI6Jcy1CJC8FMD/APBWAM8D+JcR8fOG/Z4HcBzAEMAgIm6ap11jjDF1mNccdA+Ab0bEbgDfnHzP+I2I+EdeAIwxZnGYdxG4HcDnJ58/D+A35zyeMcaYFpl3EbgyIo4CwOT/K5L9AsDXSX6H5N452zTGGFOJqZoAyW8AuKqh6N4Z2nl3RBwheQWAR0h+PyIeTdrbC2AvAPQv29moVmWCkwrqppxJlMiblS2L49V2XFkTAdqybFC9QVmAOxE3K0clZlNlyXnJvotsXzyXHHAtF2vjXB5cLgbK5S47nhBeRT+yvqvzleOUDIUUfwu0RvUigZqPPdGRzClsScyrZfFyR8mc6wkHzYxS57PMIVBmbROi8axMXQQi4r1ZGcmfkrw6Io6SvBrAi8kxjkz+f5HkQwBuBtC4CETEPgD7AGD1+uvqhgY0xhjz/zGvOWg/gDsnn+8E8PD5O5DcTvKSX34G8H4Az8zZrjHGmArMuwj8IYD3kfwhgPdNvoPkNSQPTPa5EsC3SD4F4K8BfCUi/mLOdo0xxlRgLj+BiHgZwHsath8BsGfy+UcA3l7cSIO5LIm3JG3d0j6ptITEnqjs/qqslxheR8KjRTl+ZbZLFcROOfi0SZFzUm2ym2lRjlfIYoytKBIdzPSCNuecIpuPw8LfmNT5Vd1KFefwYtyxxhhjNgUvAsYY02G8CBhjTIdZ7AByLaHeWc7KpE2zahro1y+p1KHsnSI5Ryw1B+nicp5BnSt5WclfSOp4EP3I+q7OV41TSSDArqHm6ajgN0H9jiwyfhIwxpgO40XAGGM6jBcBY4zpMF4EjDGmw1gYxpQsXEmZCghV4oSi+iDbKuhfm7q17EaihY6WxPmu5H+39Faab2duWU3rUGRo4rnZA8hBCcOiH5H0XZ2vGqdsbFsVjMV9VvueVvOnxLGqpC3ZhwXGTwLGGNNhvAgYY0yH8SJgjDEdZvE1gQa7YmrGFTbIkciWIszCGCZ2PpV0QgZ8SxxKVJ2h6Ht2XlJjEMcr8ndRdn/xZ0aWEGe4IsZiNTF2A+hta7bHc7QlrcOe6OCqyOaTkTl9AYitK2nZKOm7Ol81TtnYqutRYjtX94u6z6QOl9RT84Ai2loUzDmlCWS/Cep3RP3+ZL9b6ng1dT0/CRhjTIfxImCMMR3Gi4AxxnSYxdcEGgyVma1R2d0oAnENhrndtYSSAHIjYZAdDPO1OitT9tjaPgQlvgAAMEpeqVe27sHWfCw4TA4o/DYy3wIA4NrsmkAs5yc8Ws3bGmxrLlPnKzWBZCjU9Sh6zb3QF0Ddn9k9TYqxFfOnrfmofkdKNBA1RjWzyvhJwBhjOsxciwDJD5N8luSI5E1iv1tJ/oDkIZL3zNOmMcaYesz7JPAMgN8C8Gi2A8fPcJ8BcBuAGwB8hOQNc7ZrjDGmAvMmmn8OAKhj5dwM4NAk4TxIPgjgdgDfm6dtY4wx89OGMHwtgBfWfT8M4B3ZziT3AtgLAP3LdgKj1+4TyaIzEgKqWqcGeVHqsDESzmK9XkOnp6BENC0MN4tRw4Hy0qqckko0VSQMr4qxGChHt+bGInGcAoCecMbisOA69oUToQgGN9ySiI1bleNcXWG4yC6g7hdxn6n7k73ZX9RQ80dlAcxQ8ztzWhsqB1Ixh7MyKQzPfmumTF0ESH4DwFUNRfdGxMMbaKPpTNKrEhH7AOwDgNXrr7s487UZY8xFwtRFICLeO2cbhwHsWvf9OgBH5jymMcaYCrTxiujjAHaTvJ7kCoA7AOxvoV1jjDFTmEsTIPlBAH8M4E0AvkLyyYj45ySvAfC5iNgTEQOSdwP4GoA+gPsj4tkNNRDNdrHMvh9DYYMU650K1JTZk4cjkYwEBTZNVaZsq5k9UYyF1gRER7IqSn4Qd1iuCZQ1Fr3mzveXhSagbNPiGud9EHZ6kQQms+8Ptqg6eT+ysVXXQwaXSyuJMuWwqOZqdk1UoEdhj6/sA5fqDyNxTkoTSMdCjZ90JJuNed8OegjAQw3bjwDYs+77AQAH5mnLGGNMfewxbIwxHcaLgDHGdJjFDyDXZPvKNAFp91eGf1GUvY8r3j0ueS+5NNhWZk+MEhskAKr3j7NxVxJDiSYg+qCD1WVJavI6vdKxyPogk+iIskS3UH0fqbLMT0BpAiXxytS1UrqUSOaTHVImQ0r0IKD+fMwGKv2tgNYEUtu/9BNwADljjDEV8CJgjDEdxouAMcZ0GC8CxhjTYRZbGA6CDeJSHngoP5TShkYyqlZSUegy9YUoUTHLSqQETyXYFQWQyzuogrcpYTM9ngpWl9zN6nwpkocVXMbiLGtZWYmzHZCPrQ4gV/eE1dhmQSDHhVlANTXBRVFr87Es4FsqeCshXM3hGfGTgDHGdBgvAsYY02G8CBhjTIdZbE0AaLSlMbPXKXuxCOwljb+J7VKaNPOivI6MWKXKkv4pRydRVmQHL3SQys5L5ikRd2wvyQ7U6lgoU628P5u3y4BvJRqDqlPwJ6EaI+U8pWzaqT1eztO8qCiCnCCdqwXzFBD3Z+VAjxl+EjDGmA7jRcAYYzqMFwFjjOkwXgSMMabDLLYwHM0CUqqxKCFKCkdKNBb1KiKbKRGNlYbWYmYx9PMDjjLRXYiXSuTNnKekwFtRYJtKiY9egZisyrLsa9OOl1fKi7T4K+pl1RZgnsqmil/uyLYLMdnCsDHGmBrMtQiQ/DDJZ0mOSN4k9nue5HdJPkny4DxtGmOMqce85qBnAPwWgP++gX1/IyJ+Nmd7xhhjKjJvovnnAIDS4D4nDbav3B5W2I8W7YnVqWzTLrI1FgdNa26s2Iafxfpr0+5fSGr+LXSCKokDWDIPpLOYqlcSAM3z9ILQliYQAL5O8jsk96odSe4leZDkweGJky11zxhjusnUJwGS3wBwVUPRvRHx8AbbeXdEHCF5BYBHSH4/Ih5t2jEi9gHYBwCrb961wOunMcZc/ExdBCLivfM2EhFHJv+/SPIhADcDaFwEjDHGtMcF9xMguR1ALyKOTz6/H8AfbLi+eqe9Fhfz80abdtLMAFy5D21c8tc7rekgLb3LPm6r8vHaZIHv6XlfEf0gycMA3gXgKyS/Ntl+DckDk92uBPAtkk8B+GsAX4mIv5inXWOMMXWY9+2ghwA81LD9CIA9k88/AvD2edoxxhhzYbDHsDHGdBgvAsYY02EWPoBcc2axwmOV9mGzqez4Ix2JCsqKHJMgApbVziAl67R4gdVAFWWrEkUlGecE6TAV9q96UL+LdZ4W1iudc034ScAYYzqMFwFjjOkwXgSMMabDLLYmgMSGWRIorNhwPXsVGVSrdmCvpDHVDlUykspOLUUJZ0oTnyRjoc53UTSByGz1yhlL2feTshA3U6lekB5PDa1KAFWQZGXh52lBR+QctiZgjDGmBl4EjDGmw3gRMMaYDrPwmsBMSWVE5LHS95Jrm4xLTHnSFNpL3geXfgKFmUAy1EkJ+35Wpuz+FInr07YK/Q5YcPGz9/MnhXlbyXVUtnNp388uZKluVttPQEUJzC5jiY5QSO15qv12kjmstLEN9mkj+EnAGGM6jBcBY4zpMF4EjDGmw3gRMMaYDrPQwjAjEXwSUUnqf8oRpnIwq9pOKCWOIdKpqs1gWyViWYGYrMqUwCbF35JrJcRfJRqnzmKKEpG3zQxXxaLxbNuntpW10+Y8lS9PJH1QL7qoeTAjfhIwxpgOM296yf9C8vsknyb5EMmdyX63kvwByUMk75mnTWOMMfWY90ngEQD/ICL+IYC/AfC75+9Asg/gMwBuA3ADgI+QvGHOdo0xxlRg3hzDX1/39TEAH2rY7WYAhya5hkHyQQC3A/jexhp5rV2sdoKLVp3FCo6nqrQ5FiVxvRSp2VrZO8UAZvW0JpA3VXaxypzFSqrIQICZbqbaUo5z2fbCuVNUdhHP05KK8lpVjPRYUxP4NwC+2rD9WgAvrPt+eLLNGGPMJjP1SYDkNwBc1VB0b0Q8PNnnXgADAF9oOkTDtnTRJLkXwF4AWNr5a9O6Z4wxZg6mLgIR8V5VTvJOAB8A8J6IxofXwwB2rft+HYAjor19APYBwJbrdi1C5lBjjHndwubf7Q1WJm8F8EkA/ywiXkr2WcJYNH4PgJ8AeBzAv4qIZzdw/JcA/Hjy9XIAPyvubDu4j3VwH+vgPtbhYuvjWyLiTRutOO8icAjAKoCXJ5sei4i7SF4D4HMRsWey3x4A/xVAH8D9EfGfCto6GBE3FXe2BdzHOriPdXAf6/B67+O8bwf93WT7EQB71n0/AODAPG0ZY4ypjz2GjTGmw1xMi8C+ze7ABnAf6+A+1sF9rMPruo9zaQLGGGMubi6mJwFjjDGVWdhF4GIITkfywySfJTkimSrzJJ8n+V2ST5I8uKB93MxxvJTkIyR/OPm/0UtwM8Zx2rhwzKcm5U+TvLGNfs3Yx1tIHpuM25Mkf6/l/t1P8kWSzyTlizCG0/q4qWM46cMukn9J8rnJnP7thn1mH8uIWMh/AN4PYGny+Y8A/FHDPn0Afwvg7wBYAfAUgBta7OPfB/D3APwvADeJ/Z4HcPkmjePUPi7AOP5nAPdMPt/TdK03Yxw3Mi4YvwX3VYw9498J4NstX9+N9PEWAP9zM+6/Sfv/FMCNAJ5Jyjd1DDfYx00dw0kfrgZw4+TzJRj7X819Py7sk0BEfD0iBpOvj2HsaXw+vwpOFxHnAPwyOF1bfXwuIn7QVnslbLCPmzqOk7Y+P/n8eQC/2WLbio2My+0AHogxjwHYSfLqBevjphIRjwJ4Reyy2WO4kT5uOhFxNCKemHw+DuA5vDYO28xjubCLwHlc7MHpAsDXSX5nEhtp0djscbwyIo4C4xsdwBXJfm2P40bGZbPHbqPtv4vkUyS/SvJt7XRtw2z2GG6UhRlDkm8F8OsAvn1e0cxjuanpJdsOTlfCRvq4Ad4dEUdIXgHgEZLfn/zlsSh93NRxnOEwF3QcG9jIuFzwsZvCRtp/AuNQAicm3vtfBrD7QndsBjZ7DDfCwowhyR0A/hzA70TEq+cXN1SRY7mpi0C0HJyuhGl93OAxjkz+f5HkQxg/wlf78arQx00dR5I/JXl1RBydPLq+mBzjgo5jAxsZlws+dlOY2v76H4qIOEDyT0heHhGLEg9ns8dwKosyhiSXMV4AvhARX2rYZeaxXFhzEMfB6f4DgH8REaeS3R4HsJvk9SRXANwBYH9bfdwIJLeTvOSXnzEWvBvfQNhENnsc9wO4c/L5TgCveXrZpHHcyLjsB/DRyVsZ7wRw7JemrZaY2keSV5Hj9Dkkb8Z43r/8miNtHps9hlNZhDGctP+nAJ6LiE8mu80+lpupdk9Rwg9hbNt6cvLvvsn2awAcOE8N/xuM35C4t+U+fhDjlfcsgJ8C+Nr5fcT4rY2nJv+eXcQ+LsA4XgbgmwB+OPn/0kUZx6ZxAXAXgLsmn4lx+tS/BfBdiLfENrGPd0/G7CmMX7L4xy3374sAjgJYm9yL/3YBx3BaHzd1DCd9+CcYm3aeXve7uGfesbTHsDHGdJiFNQcZY4y58HgRMMaYDuNFwBhjOowXAWOM6TBeBIwxpsN4ETDGmA7jRcAYYzqMFwFjjOkw/w8LyBc5sfCJXwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "osa_x = np.linspace(-2, 2, 50)\n", "osa_y = np.linspace(-2, 2, 50)\n", "(x,y) = np.meshgrid(osa_x,osa_y)\n", "z = np.exp(-np.sqrt(x**2+y**2))*np.cos(2*x)*np.sin(2*y)\n", "ax.pcolor(x,y,z,shading='auto')" ] }, { "cell_type": "markdown", "id": "acbb8891", "metadata": {}, "source": [ "Kontury získáme použitím funkce `contour()`:" ] }, { "cell_type": "code", "execution_count": 45, "id": "cc9d3f28", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABg+ElEQVR4nO3dd3hUVfrA8e+ZyWQy6b1XCJCEDqF3UEFEBOwNy66ou7q7v3V3beu6xbWt7rqrropt7YsNAQERlKrUUAIpQCAhvfeezJzfHzOwiAEyJZkJnM/z5MkkmXvvmzsz97333HPeI6SUKIqiKIrG2QEoiqIorkElBEVRFAVQCUFRFEWxUAlBURRFAVRCUBRFUSxUQlAURVEAByQEIUSMEGKjECJLCJEhhPhlF88RQoh/CSFyhBDpQohR9m5XURRFcSw3B6yjE3hASrlXCOEDpAkh1kspM097zuXAAMvXOOAVy3dFURTFRdh9hSClLJFS7rU8bgCygKgznnYV8K402wH4CyEi7N22oiiK4jiOuEI4RQgRD4wEdp7xpyig4LSfCy2/K+liHUuAJQBeXl6jk5KSHBmiYofa1lYa29uJ9vV1diiKCyior8NP74GvXu/sUJTTpKWlVUopQ2xZ1mEJQQjhDXwG/EpKWX/mn7tYpMuaGVLKpcBSgNTUVLlnzx5HhajY6eltm3k3fT97fvaj20TKRcZoMjHgpX9w//iJ3D92grPDUU4jhDhh67IO6WUkhNBhTgYfSCk/7+IphUDMaT9HA8WO2LaiKIriGI7oZSSAN4EsKeXfz/K0lcBiS2+j8UCdlPJHzUWKoiiK8ziiyWgScCtwUAix3/K7R4BYACnlq8AaYC6QAzQDdzhgu4qiKIoD2Z0QpJTb6PoewenPkcDP7d2WoiiK0nPUSGVFURQFUAlBURRFsVAJQVEURQFUQlAURVEsVEJQFEVRAJUQFEVRFAuVEBRFURRAJQTFCl0Wn1IualK9KS4oKiEoVjnnCETlomGuWKNcaFRCUBRFUQCVEBRFURQLlRAURVEUQCUERVEUxUIlBEVRFAVQCUFRFEWxUAlB6bYOk8nZISguplO9Jy4ojpgxrcd0mEyUNTb2+HZkDwy5cvSAnR6J8Rx/q29tJbuykuyqCrIqKsiuqqCyuRl/Dw+KGuqtX2EP6Il90heI3h4N0sXmTFLirtXy0u4dfJx5kOTgEAYFh5i/BwXjo9dbszoHhOjYtfbEMItef91s4NIJIbuygglvvebsMC5q7lotAwODmB6fQFJQCN/ln2DK2687OyzFBVyeOICR4ZFkV1aQXVnB9oIC2k1GZ4el2MEhCUEI8RYwDyiXUg7p4u/TgRVAruVXn0sp/3y+9Ub5+PLXmZc6IsTz6pmzFkev0PFRnm2Nnjodg4JCSAgIwE1jblk0SclLu3cwMSaW+QOTzhJi754Fuf45l2P19jWRPMul7ieZh9hfWspLl1956jXvMBo5XlvDkapKWjo6ul5fzwTp2NU5dG09t84utyMlN9uxvKOuEP4DvAS8e47nbJVSzrNmpYEGAzcOGWZPXIoDZVdWUNvayjXJg1mQlOLscBQnajMaeXzTN+TX1RHn7w+ATqtlUFAwg4KCnRvcRc6ehOCQm8pSyi1AtSPWpbiu7YUFAIyPjnFyJIqzTbC8B3YU5js5EsWRerOX0QQhxAEhxFohxOBe3K7iIGWNDRjc3Aj39nF2KIqTJfgHAFDW1OTkSBRH6q2bynuBOClloxBiLvAFMKCrJwohlgBLAGJjY3spPKW7VJVLBdT74ELVK1cIUsp6KWWj5fEaQCeE6LKhUUq5VEqZKqVMDQkJ6Y3wFEVRFHopIQghwoXllEIIMday3are2LaiKIrSPY7qdvoRMB0IFkIUAo8DOgAp5avANcC9QohOoAW4QZ6tP5uiKH3GxTo48ELlkIQgpbzxPH9/CXO3VEVRLgDqDsKFSdUyUhRFUQCVEBRFURQLlRAURVEUQCUERVEUxUIlBEVRFAVw8fLXitKbOk0mGjpaqe9opb6jhfr2/z1u7GjDdJYulhoEPjoPfN098NF54KczmH+2/E4r1HmX0jeohKBcVFo6OzjRVEV+Yw0FTdUUNNWQ32R+XNJSh9HBw2PchIZITz9ivAKJ8QogxiuAWK9AYr0CiPMOQq9VH0HFdah3o9JtfW0IkpSSkpZ69lUXsL+qgH3VBWTXlf7goO+nMxDrHcCwwGiu8BpKsN7LcnZvOHWG76vzwFvngfYs9XuMJhONnW3UdbRS395CQ0crdR2tNHS0UtnaSEFTDQVNNRyqKaKuo/XUcjqhIdk/ghGB0YwMimFkYAxhBt8e3y+OpIaXXlhUQlCs4uoDkho6WvmqKJPvyo6xr7qA8tYGAAxaHcMCovjpwMkM8g0j1iuAGK9AfN097N+oFrx0+m4dzGvbWyhsqiG/qZrsulL2VRWyLDeNd4/tBCDC4MeIwGimhCVyWWQyXrqzT0XpTKq43YVJJQSlz+swGfmu/Bgr8tP5tiSbdpORCIMfY4LjGBkYw4igGAb5hp2a+c2Z/N0N+LsbGBIQydxo8+SC7SYjh+tK2VdVwL7qQvZW5bO2KIM/H1jNpZHJXBUznPGhCepehNLjVEJQ+iQpJZl1pazMP8DqwkNUtTXh727g2vhRXBU7nCH+kX3mLNZdo2VoQBRDA6JYjPl/219dyIr8A6wtymBVwUFCPXyYFzOUq2KGMdAvzNkhKxcolRCUPudofTl/PbCWnZV56DRaZoQP5KrY4UwOS8Rdo3V2eHYTQpjvKQTF8PCwOWwuPcKK/HTezdnBW0e/Z0pYIo8Mm0O8d5CzQ1UuMCohKH1GQ0crL2dt5v3jO/F20/PQ0NlcFTscf3eDs0PrMXqtG5dFpXBZVArVbU18dmIfSw9vY/43r3BH4gTuHjQFTzd3Z4epXCBUQlBcnklKVuYf4PmMDVS1NXFd/Gh+mTKTAL2ns0PrVYF6L+4aOJkFsSP4e8YGlh7ZxsqCdH475FIujxrcZ5rIFNelEoLi0jJqS3jiwBr2VxcyPCCaVyfcxOCASGeH5VQhHt48NXoB18WP5i8H1vDA7s9YlpvGo8MvZ6BvqLPDU/ow1W1BcUlSSl47vJVrNy6loKmGJ0ddxYfT7rzok8HpRgbF8MmMu3h8xBUcritl0bev8m7ODmeHpfRh6gpB6bbeGoQkpeRfWRt59fBW5kUP5bHhcx0zXuACpBUabkhIZXZkCn/Yt4qnDq6j3WTkpwMnOTs0pQ9SVwiKVUQPD007PRlcEzeSZ1IXqmTQDQF6T/4x9lrmRg/h+YwNvHnkO2eHpPRB6gpBcRlSSl7M2nQqGfxp5JVoevlGaVNnM5VtlVS2V1LVVkVFWxWV7ZXUtNdgkqYul9EILUHuAQS5BxGsD7Z8BRHsHoSnW+/d+HbTaHhm9EIAnsvYgBCCOwdM7LXtK32fQxKCEOItYB5QLqUc0sXfBfBPYC7QDNwupdzriG0rFwYpJS9lb+KVw1u4upeSgZSS0tYyMuuzyKrPIrvhCA2dDT94jrvGnWB9MEHugWhF12McOk2dFLeUkF53iHZT+w/+5qfzJclnEMm+yaT4JhPm0bM3fU8mBSklfzu0HkAlBaXbHHWF8B/gJeDds/z9cmCA5Wsc8Irl+wWlrrmVrMJysovKyauoob3TSKfJhNFkotP4v+/ubm4khAaQGBFMYlgQCWGBeOgu7ou1T0/s49/Z5mTw5x5MBu2mdrLqszlQe5D0unQq2ioBCHQPYJjfUKI9owjRBxPsbj7L93bz7nZ3TiklDZ0NVLRVUtVeRWVbFfnNBWTVZ7GzejcAYfowhvsPZZj/UJJ8BqHT6Bz+P7ppNDybugiAvx1aT7jB91SZDEeTfaTkYXNbB7nlVeSUVnGstIrc8ho6TCbcNAKtRoObVoNWo0Gn1Vg+n4EkR4UwKCoEX8PF02TpkKOQlHKLECL+HE+5CnhXSimBHUIIfyFEhJSyxBHbd4b2zk52HMkno6CMrKIKsovLKan539lloLcnBne3H7zZ3LQa3DQamtsa2JqdS6fR3AShEYLoID/6hwUxKiGSK1NTCPK5ePrY5zZU8VT6V4wPSeixZNDU2cz6sg18XbqeJmMz7hp3UnyTuTx8DkP8UgjVh9rdj18Iga/OF1+dL/3pd+r3J69EDtVlkF53kI3lm/m6bAM+bj5cHn4ZM8NmYNA6dnCdm0bDM6kLKW6u40/7VzMyMIYITz+HbsOVldc1snJPJgfySsgpq6Kouu5UpwidVktciD8Gdx2dZ5ysGU0mmts6qGlqObWuqEBfkqJCSYoKYWhMOGMHxKDT9v0R8V3prdPSKKDgtJ8LLb/7UUIQQiwBlgDExsb2SnDdJaUks7CcFbszWbMvm7rmVoSAuOAARsRFcsPEEJKiQkmOCiXA+9wf8A6jkfyKWnLKzGcsOZavjRnH+Ofa77hkaCLXThjGmP7RF/SAow6Tkd/t+Rx3jRtPj17g8GTQ0NHAutL1bCj/lhZjCyP8hzMrdAZJvkm498DZeVeEEEQYwokwhHNp+CzajG1k1WezvuwbPi78jNUla7ks/FIuDZuFl5uXw7ar02h5NnUhCze+xoNpy/nP5Nt6/Z5MbzKZJNuPnOCTHQfZlHEMo0nSPyyQwdFhzE9NITE8iP5hQcQG++OmPXd/msqGJg4XVZBVVE52UQXZReV8czAHgEBvA1eMSmbB2MEMjAjujX+t1/RWQujqXdjltaaUcimwFCA1NdUlrkerGppZvTebL3ZncLSkEnc3LbOGJDJ/TAqjEiLx1FtfOkCn1dI/PIj+4UEw/H+/P15WxSc7DrJydyZf7T9CfEgA14wfylVjUvD3uvBKNLx/bCeHaov5x9hrHDoXQG17LWtL1/Ft+SY6TB2kBo7myogriPNy/kmGXqtnRMBwRgQM51jjcVYVr2Z50Qq+Kv2aS0Jncln4pfjqfByyrVjvQB4ZOoff71vJp3l7uS5htEPW60oqG5r4YlcGn+08RGFVHQFeBhZPHcU1E4YRG+xv0zqDfbwITvJiUlL8qd81tbaz53ghK3Zn8NF3+3lvy16So0NZMGYwV4xKws+z7zctCemgzuWWJqMvz3JT+TVgk5TyI8vPh4Hp52sySk1NlXv27HFIfLaobmzmyc838s3BHDpNJobEhLFg7GDmjBjU4y9+a0cn6w8c4ePt6ezPK8HdTcvNk0fwyysmo3VSGecntmzi44yDpN97v0PWV9HayJz1LzImKI5XJtzokCshkzTxRdFK1pSsxShNjA8ax5WRc4k0uPaAtvzmAlYVr2Z39R50Gh3zI+cxL2KuQ/aJlJJbt/6HnPoK1l12P34Oqv3U71/Pc//Y8fzfeOeMeegwGvnbii18siOdTqOJMf2juXbCMGYN7Y+7W8+e69Y0trBmXzZf7Mogu7gCnVbLnBEDeXDBdKcnBiFEmpQy1ZZle+sKYSVwnxDiv5hvJte5+v2D/bnFPPDeauqaWrh5ykgWjE0hMbz3Lg89dG5cmZrClakpHC2p5J3Naby9KY2imnqeumlOj7/hu+LoG4jvH9tJS2c7Dw2b7ZADX5uxjdeOv0FazV4mBI1nYdRVPd6rx1FiPWP4eeI9FLeU8Fnh53xa+DnFLcXcmXC73TeehRA8MmwOV29cyse5adw1aLKDonaelvYOfvPuarZk5XLdhGHcPGUk/cICe237Ad4Gbp4ykpunjCS7qJzluzL4eHs6e3OL+Ptt80iJ7pslyh3V7fQjYDoQLIQoBB4HdABSyleBNZi7nOZg7nZ6hyO22xOklHywdR/Pr9pKeIAP7//iBpKinHtQGRARzBM3zCYxLIjnv9xKXXMr/7x9Pl4eTqhy6aAm6ObOdpblpnFJZLJDyjjXttfywtEXyWs6wc2xN3Bp2CV98t5LpCGC+xJ/xqqS1XxWuJzKtip+MeDn+NjZhJTiH8GEkH68f3wXtw2Y0KfLhNc1t3Lfm19w4EQJj10zi+smDHNqPElRoTy8MJS5o5J44J0vufXFZTyycAaLxg3pc+9Bh7Q9SClvlFJGSCl1UspoKeWbUspXLckAafZzKWV/KeVQKaXz2oHOoam1nd++t4ZnVmxmcnI8y/7vJqcng9PdPiOVv944mz3HCrnzlU+oamh2dkg2W5F/gLqOFm5PHG/3ugqaC/lT5l8painmFwPu47LwS/vcB/F0QgjmR87j3v5LyG3K5c+ZT1LaUmr3em9PHE95awPrijIcEKVzlNY2cPvLH5NRUM7zi+c5PRmcbnhcBB//+mZG94vij59s4LFlX9PS3uHssKyiSldYHCut4oYXPmR9+lH+74rJ/OuO+S7Z/3h+agr/umM+x8uque2lZRRW1Tk7JKuZpOSdnB0MDYhkZGCMXetKrz3IE5lPYZImHk1+iFEBIxwTpAsYHzSOB5N+S4uxmT9n/pXs+sN2rW9yWCL9vIP5T84OHHXvsDflllez+KVllNQ08OqShVw6bICzQ/qRQG9PXrlrIfdcOo6VezK55V//Jb+y1tlhdZtKCEBFfSN3vvIpDa1tvHHP1dw5c4xLn2FOTenH63dfTU1TCz9/84s+dxayp/IEJ5qqWdx/vF37+WhDDi8cfZFQjxAeH/wo8V5xDozSNQzwSeQPKb/HV+fH80de4ETTCZvXpRGCWxPHkVlbQmatS9/C+5HG1jbufX05bR1G3v7ZtYxNtO9EoidpNRp+Pmci//7pQsrqGvnJK59S19zq7LC65aJPCFJKHv1oHc1t7bxxz9WMceE32ulGJETyt1uv4HhZNX//cquzw7HK5tIj5qkvIwbZvI7q9mpezHmZYPcgHkr6LYHuvXdDsbeFeoTwcPJv8Xbz4p9HX6K+o97mdV0WmYwANpUdtTuu3jxlevLzjZTWNvDPO64kOdp1mnHPZXJSPK8tWUhlQxN//Hi9s8Pplos+IXy1/wjbj+Tz63lTerUXkSNMHBTHrVNH8d/vDvD9YdvPHHvb5rIcxgTH4WXj1I9SSl4//hZtxjZ+OfB+hw7mclV+Oj9+MeA+6jsaeDv3HZubfAL1XgwNiGJLqf0JobesTz/KqrQsllwyjhHxrt19+EyDY8K5b85ENhzMYUtWrrPDOa+LuoBOU2s7z63cTHJ0KNdNdJ2bU9b45dxJbMo4xj/XbGPCwFiXbuoCKGqq5VhDBdfGj7J5HZsrtpJZn8Xt8bcS1YPjC4yynerWdCpadlPdehCTbO/yeRqhJ8hjGKGGcQR4DEYjemYEdIJXPIuiF7Cs4BN2Ve9mXNBYm9YzNXwAL2dtorqtiUC9aydTo8nEv9Z8x4CIYJZc0jfLny2eOooVuzN5evlGxiXGoHfhumUX9RXCWxv3UF7fxKOLZjptsJe99Do3fjJzDJmF5ew4mt+j23LEbcgtlqaKqWG23RCs72jgvwUfk+QziGkhUx0Q0Q91mlooaFjL9yW/ZFXuVLYW30V2zRu0GavPukybsYKsmtfYXHwHq3Knsb301xQ1rsdoanN4fLPDLyXBK573TnxIi7Hl/At0YXrYACSwreyYY4PrAZsyjpNXUcOSS8aet9yEq9K5aXl44XQKqur4YOs+Z4dzTq6bqnrB1uxcxibGMDwuwtmh2OXK1GSeWr6RrVl5TBjYszdW7Z0g51BtMYHunsR729bmv6ViKy3GFm6NuxmNcNwBot1Yz6GqFyhsXEenbMagDSPBdxEhhrEEe4zGXXvucQDtxjoqWtKoaNlJUdO3lDRtxE3jTaz3FQwOuh+dxjFn4lqh5da4m/lz5l/5rnI7l4TNtHodyf4RGLQ6MmqLmR/r2lfGWzJz8TXoXbJHkTUmDIxjcEwY27LzuHPmGGeHc1YXbUJo7+zkaEkli6fa3nThKtzd3BgaF8He3CJnh3Jex+orSfS1rbKoSZrYWL6ZZJ8koj2jHBZTdeshdpX9jpbOCmJ95hHrcwXBHqMQViQcd60fUd4zifKeyfDg31HRspv8xjUcr/+E8pbtjA17Fn+97TfRT9ffux/xnnF8W76RWaEzrN6XGiHo5xPMsYZKh8TTk/bmFjEqIarPXsGfbkhMGKv3ZmMySTQa12za7ft72UZHSyrpNJpIiembQ8zPNDIhkuyicprbum7ndgVSSo41VJDoG2LT8gfrDlHZXsmM0OkOiyen9gM2F5kHzk+LeovRoY8TYki1KhmcSQgtoZ7jSQ39M1Mjl9JpamZT0WJy6z9zWP//GaHTKWop5kijbTeH+/uEkFNf7pBYekplQxN5FTWMTOhbN5LPZnB0GI2t7eRX1To7lLO6aBNCRqH5wzC4j9YcOdPohCiMJsmBE67bv7ystYHGzjb6+9iWEL4t34SfzpfRASPtjqXD1MiOsgdIr3qOcM/JzIz+L4EeQ+1e75mCDaOZGb2MYI/R7Kt4gt3lj9Bpsq3t/3QTgsbhqTWwsXyTTcsn+oZQ1tpAQ4fr9o/fn1sMwKh+jrsadKaTJ5+ZBWVOjuTsLtqEUFrTgBAQ5u/t7FAc4mQxrZzSKidHcnb5TeYbs7bULmo3tXOgNp1JQRNx09jf0rmv4glKm7YwLOg3jA//O+5ax5XePpOHWyCTIl4iJfA+ChvXkV71vN3r1Gv1jAscS1rNvrPO9XwucV7m1yC/qcauOHpywHNOmfm9nNJHxh2cT2SA+T1WXGP7OJKedtEmhISwQKSEvHL7PhCu4mSbpCtPgNLYYe5146ezviRIUUsxEkk/7wS74yhs/JrCxnUkB95Nov/NvdJVVwgNSQE/YYD/YvLqP6O0aZvd6+zn3Y92UzvlbRVWL+vnbn4Nmjps7wnV0/vtZAcGR3YecKZjlgTXP8z+Yo495cLY0zZIjjI3W2QXuXY7and1GI0ALt0172TzhLctCaHZfMM82hBtVwwtnRXsr3iSAP0QBvr3ftHdlIB78dX1Z2/Fn2g32leHKtpgbkopbLa+M8HJ18CVm4xOvpc7TdZfAbmi7CJz4k52oYKZZ3Ldo0cPiw8JRO+mJbvY+rMrV2Q0ma/dXbk3RmOn+WzUW6e3etmClkJ0ws3u+Q32Vz5Fp2wlNfTPaETvd7LTavSkhj1Bm7GW9Mrn7FpXlCESgaCwpdDqZb3dzK/BydfEFblZ3stG44WSEMrx8/Rw6WZq1z169DA3rYYBEcHsPV7UJys/nqmtoxP434eoR9i5n042T9hSsqK4pYQIQ4RdzQcN7ScoadrIIP878XG3v+nJVv76JBL9bya/cQ0tnbZfoeq1eoL1wRS1FFu97MnXwN6E4OhJk0538gqh1fLe7stMJsm+vGKSokJcuprARZsQABaMHcyhgjLW7rOvrLArSDtmPkscFGlbD57usue9rLNMytJhMlq9rETiZucZfUuneU6BEIPz5xUO9hgFmGjptO8K1U24IW24qXzyNdAJ2yfK6enD2kDLezntuPVXQK7m050HOV5WzVVjBjs7lHO6qBPCNeOHMiQmjGdXbqa+xXXbUrvj24xjRAT4kBTVswnBHv9rt7b+rNRD60GL0b7X6GQtop6qNWQNjTCfoZ+tPlJ3tRhbMLh5Wr3cySsDHxvu5/SWkfGR+Hl6sDHD9UtsnEtlQxMvrN7GmP7RzBuV5OxwzumiTghajYbHrplFTWMLf1/Vt0pIn66lvYMdR/KZntLfpS9HfSz3DhptuJHpqTXQYrRvhjgT5qaHkwdjZzp5/8IRCcFTa7B6uZM9vnxsuJ/TW9y0GqalJLAlM/dUp4m+RkrJM19soqW9g99fPculP5/goIQghJgjhDgshMgRQjzUxd+nCyHqhBD7LV9/cMR2HSElOozbp4/ms52HWLUn09nh2GT7kXxaOzqZMaSfs0M5Jx83268QDFoDzTYWczvJla4QtA64QjBKI22mNgw2JAR7enz1phmD+1Pf0sbe465flqUry75P56v9R7j3svH0C3P9OTvsTghCCC3wMnA5kALcKIRI6eKpW6WUIyxff7Z3u4503+UTGdUvikc+WsffVm6mo7PvnI00t7Xz6tc7CPbxJLW/fV0yz8fe24dBHuYCb6Wt1g/MCXQPpN3UTkWb7fV3dBo/AOranD8XQF17DmCugWSr4hbzqPRA9wCrly1tMb8GwS5e/nrioHh8DHpe/mr7qY4TfUFrRyd/+fQb/vr5t0xKiucnLlzQ7nSOuEIYC+RIKY9LKduB/wJXOWC9vUan1bJ0ySJunDSCdzfv5daXllHQB+ZBbWxt456lyzlcXMHj116CTmv7DcLusqfaaT+fEHQaLVk2TN84wn84AGk1e23efqhhLD66BDJr/t0jpam7q8PURFb1a/jrUwjQ214uY09NGgLBcH/rK5Zm1ZXio9MT5elv8/Z7g6dex+8XzWRfXjH3v7WiT0wXe6y0ihtf+JCPt6dzx4xUXrxzvkt3Bz+dI6KMAgpO+7nQ8rszTRBCHBBCrBVCnPVWuxBiiRBijxBiT0VF740R0OvceGTRDF64/UoKKmu59u8fuHTvo/qWVu5+7XMO5pfy7K1zmT64v7NDOi93jZaBvqFk1pZavWyYRyixnjGkVdueEITQMDz4dzR1FHC49k2b12OvzOp/02qsYETwg3a1KadV72WATyJ+OuuvMjJrS0jxi3D5Nm2AuaOS+PP1l7HjaD4/f+MLly3gKKVk+c5D3PDCh1Q3NvPKXQv59bwpvXKi5iiOSAhdvaPObF3YC8RJKYcDLwJfnG1lUsqlUspUKWVqSEjv95iZNTSRTx+4hQERQfzu/TU8vmy9y70Ba5ta+Omrn5FZVM7zt81j9vCBzg6p21L8I8isLbFp7MfogFEcbcyhtt32Eb6hnuOJ8b6CwzVvU9/e+71XalozOFb3X/r5Xkugh+1zEZS1llHQUkhqgPVdaDtNJg7XlZHi33fmAVk4djBP3jiHtONF3LN0OY2trjWgrqGljQc/WMsfPl7P8LgIPn3gFiYnxTs7LKs5IiEUAqfPTB8N/GCkjJSyXkrZaHm8BtAJIVx2AuOIAF/e/tl13DVrLMt3H+KSP7/BHz9ez55jhZhMzhvEJqVkffpRrv/HhxwrreKfd8xn5hDXvzI4XYp/BHUdLeQ1nn0GsrNJDRiFRLKl0r4eYUODfo2bxpMdpb+mpq33OhJUte5nZ9lv0WsDGRx4n13r2lSxBcCmyq/ZdaW0mTpJ9g+3Kwbo2eJ2Z5o3Oplnb53LwfxSrv/Hh2zOPO7UQaVGk4kdR/J59KN1XPKX1/n6wBHuv3wir929iBBf1x2NfC6OGLu/GxgghEgAioAbgJtOf4IQIhwok1JKIcRYzInIdctyYu7y9ou5k5g+uB/Lvj/Amn2H+WznISIDfLliVBLzRif3Wq8BKSXp+aX8c/U2dh8rZEBEMM/cfDkj+mCd+OnhA/kLa1hRcIBfpVg321e0ZzSpAaNYWbSK0QGjbJ5P2cMtkAnh/2BX2cNsKryNlMCfMdB/McKOQVrnYpKdZNe8QXbN63i6RTAh/B/ozjMD27nkNubxVcnXTA6eSLDe+vOqFfkHcNdomWLjNKYnOaO5afbwgQR4GfjLp99w35srmJQUz5JZYxmZENlr8RwpqeTLPZms3neY8rpGvD3cmT18IDdMGn6q6nBfZXdCkFJ2CiHuA9YBWuAtKWWGEOIey99fBa4B7hVCdAItwA2yj9SLGBYXwbC4CB5d1MG3h3L4Mi2LN7/dzevf7KJfWCDTUvoxLDacoXERhPk57qygsbWNHUfy2ZKVy7bsPCrqm/Dz9OD3V8/k6nFDXbqI3bmEG3yZHJbI8hP7uS9putWlNhbH38IjB//A68ff4rGUh9HaeBAPNozikpiP2VvxFzKq/0VZ83ekhj2Bp5v9Z82na+woYE/Zo1S3HSTWex7DQx5Ep7H9fdJh6uD13Dfx0/lxU+yNVi/fZuxkVUE6l0Qm4+9ufXdVVzA2MYbPf3srH207wNsbd3Pbyx8T5ufNlOQEpiYnMG5ALJ56x3QtllJSWttAen4p6SdK2HEknyMllbhpNExKiuO386cyfXB/PHQXxuSTDvkvLM1Aa8743aunPX4JeMkR23IWT72OeaOTmTc6mcr6JtbsO8yWzOO8t2UvnZbiW2F+3gyLC2dobAQp0aEE+3jh72XAz9PjrAdwo8lEXXMrNY0tVDe1kFlYxtbMXNJyi+g0mvDx0DNhUCxTkxOYMaQ/vgbX7jfeHdfEj+QXOz9mW3kO08Otu//hp/Njcdwt/PvYq6wtWce8yLk2x+Gu9WNc2N840bCSA5XP8E3BdQzwX0yszzy7E0NTRxEnGlaRU/seQmgYG/Y00d6z7VonwBdFKylqKebXA3+Flw0jlDcUZ1HX0co1cfZPMuRMOq2WxdNGcc34IXy1/whbsnJZsy+bT3ccRKfVMqZ/NFNTEhgUGUKgt4EAL0/8PD3OOnVlh9FIXXMrtU0tVNQ3kVFQxkFLEqhsMA+IdHfTMiQmjIcXzmDOiIEEelu//13dhZHWelmwrxeLp41i8bRRtHd2kl1UQfqJEtLzSzmYX8r69JwfLePjocffywN/LwM6Ny21TS3UNLZQ19yK6YyLpcTwIG6dOoopyQmMiI/oU70UumN6+ECC9F58nJtmdUIAGBc0ht01e/i86AsSvOIZ7NfVsJfuEUIQ73sVwYaR7K94kszql8ms/jehhrGEek4kyGMY/u7JaDXnHtHbaWqhti2TqtZ0ypq/o7I1DRCEe05mRPDDeOrsv4G7t2Y/q0vWMjV4MsP9re+uKqXk47y9RHv6My7EecX9HMlT786icUNYNG4IHZ1G0o4XsTU7ly2ZuTz9xaYfPFcjBP5eHgR4GfD3MtDW0UmtJQk0tv6440hcsD/jB8YyNDaCYbHhDIoMQed2YX0Wz6QSgp3c3dxONSudVN3YzOHiCmqbzG+22qYWyxvP/HNbZyf9QgMJ6Gcg0NuTAK//fY8L8ScioOdm77KHo1r5dBotNyak8lL2Zr4tOczMCOsnn78jfjFFzUX87fDfuTp6IVdEXG5XJVRvXSyTI1+lqaOQEw1fUti4lkNV/wBAgw5PXQQGbdftwx2mRurajyItpTF8dAmkBP6cWO8rHJIIjNLI8qIVrCpeTZxnHDfHWd9UBPBl4UF2Vebx4JDLXHoiJVvp3LSMHxjL+IGx/Hb+NAqr6iioqqWmsYWaphaqGptPPa5tasHP04O4kAD8vTzw8zSYE4WnBwHeBgZFhuDv1Teb1OyhEkIPCPT2ZMLAOGeH0SMcdRy5a+BkNpRk84d9qxgeGE2QlSNmvdy8+MPgR/lP7nt8Wvg5hxuOcHe/n+Kjs/1mLYCXLpqUwHtICbyH1s4qqtvSqW5Np7GjgDZj1z2j3LV+DPBfTJDHcAI9hqLXWj9y+Gxq22t55dhSshsOMy1kCrfE3YS7xvpaTCXNdfzlwBpGBsZwS/9xDovPlUUH+REdZPtI8IuRSgiKU7hr3XgmdRHXbFzK4/tW8eK4663uJWLQGrin/10k+Q7k/RMf8YeMP/Gz/vcwwCfRITF6uAUR6TaDSK8ZDlmftTLrs3j12FJajK3c1e8nTA6eaNN6TFLyyN4VGE0mnh69oGfnzFD6NPXOUJxmoG8ov06ZxTclh/kod49N6xBCMCN0Oo+lPIJWuPFU9rOsLVln08TzrsIkTawoWsWz2c/jpfXi8ZTf25wMAN48+h07KnJ5aNgcYr1dv8Ca4jzqCkFxqsWJ49lekcuT6Wtp6GjlroGTbWrfjveK48+D/8CbuW/z34KP2Vi+mWkhk5kUPBF/d3/HB94Dqtqq2Vb5HVsrt1HRVsnEoPHcFn8rHlrbepZ1mky8lL2JpYe3MidqcI/0LOrJGdOU3qcSguJUGiH4+5ireXz/l7yQ+S27K0/wTOpCq+8pAHi6eXJf4s/YWb2Lb8o28nHhZ3xauJxh/kOZFjKFYX5DcdO41lu+w9TBvtr9bKnYxqG6DCSSFN8kboi5ntEBI20ebFXWUs8Duz8jrSqfRXEjeGz4XIcP3LrwbksrrvXpUC5KXjo9f0tdxNjgeJ5M/4qF377Kc6lXMzYk3up1CSEYHzSO8UHjKG0pZUvlNrZVfs/+2gP46XyZFDSRsYFjiPOKtatXkj2M0khuUx47q3bzfdV2GjsbCXQPYH7kPCYHTyLUw74aXlvLcnhwz3LajB08M3oh82Ntr5mkXFxUQlBcghCC6xJGMzwwmv/b9Ql3bHuXnyVP455BU9DaeOAON4RzXcw1XB29kPTag2yp3Ma6svWsKf0KT60nSb6DSPFNJsU3mUiPnqv8aZImCluKyKrPJrM+i8MNR2gxtqAVWkYFjGRa8BQG+6XYnaA6TEb+lbmRN45+x0DfUP4x9lr6+bhsyTDFBamEoLiUQX5hfDJjCX/av5qXsjaxvfw4tydOYFr4AHQa2wYFaYWWkQEjGBkwgvqOBjLqMshsyCazLou9NfsA8wjoBK94IjzCCXAPIMDdnwCd+bu/zv+8TU0dpg5qO2qpaa+lpr2Gmg7z9/K2Co425NDQ2QBAmD6UcYFjSfFNZrBvMt46+8udtBs7+bb0MG8f3U56TRHXxY/i4WFz8NA6f2Y4pW9RCUFxOV5u7jwzegHjQ+J5IfNb7t+5jCC9F/NjhrEobiSJvrY3qfjqfJgQPJ4JweMBqGirILPenBwKWwrJqMugQ/54Zi5vN2/czlI3qVMaaexs/NHv3TXuBLkHMdRv8KkrkSB9kM2xnym7rpTPT+xjZf5B6jpaiDD48lzqIq6IsX3SHeXiphKC4pKEECyKG8n8mOFsLcvh8xP7eO/YTt7O2c7wgGgWxY1gbvQQvO2cJD5EH8K0kBCmhUwBzKOxmzqbqO6oOe1sv4a6jvqzdmXVCg3+Ov8fXFUEuAfgqfV0eDNUXXsLqwsP8fmJfWTUlqDTaJkVkcQ1cSMZH5pgc/OaooBKCIqLc9NomBExkBkRA6lqa2JVfjqfntjH4/u/5IkDaxgaEMWYkHjGBsczIjAaTzfrR/GeTgiBt84bb503sZ4x51+ghzV1tLG3uoBdFXnsqswjo7YYo5Qk+YXx6LA5XBE9lAD9hVdkTXEOlRCUPiNI78XtAyZwW+J40muK2FCcza7KPN44so3XDm/FTWgYGhDF2OA4hgfGEO8dRLSXv833Hnpbu8lIYVMNuQ2V7K8u/EEC0Fn+t58OmMSlUSkM7kOznSl9h0oISre5yhAkIQTDA6MZHhgNmM+i91UXsKsyj10VJ3jj6HcYLYX4tEIQ7RlAnHcQ8d6BxHgFEO0VQKiHDyEePgTqPXutmcUoTVS1NVHR2khFawNFzbWcaKwir7GaE41VFDbVYrLs5VMJYOBkh1399IS+MauJ0l0qIShWccXBSF46PZPDEpkcZq5h1NTRxpH6csvBtooTTdXkNVaxuzKPFmPHD5bVIAjy8CLEw4cQvTd+7ga8dXp83PR46fT46DzwcdPj6aZHe5b7AUZpoqmznYaOVho722jsaKOxs42Gjjbq2luoaG2gorWR6ramUwf8kzy1OuK8g0jxj2Ru9BDivYOI8w5ioG+oSyaA0wmXfDco9lAJQbngeOn0jAyKYWTQD+8BSCmpaG2kuKXu1EH65Pfy1gbKWxvIaaiwHNBbT11lWEsrBN5uHvjo9Pi6Gwj18GGwf4Q56Xh4n/oeYfAjxMPbKVNRKkpXVEJQLhpCCEINPoQazl8iW0pJi7Hj1Bl/U2fbjyYyOkkjBN5uerx1Hni76fHQuqmDvNInOSQhCCHmAP/EPKfyG1LKp8/4u7D8fS7QDNwupdzriG0rPa/daOTb3OPsLCp0dii9RgiBp5s7nm7uhHrYN8fChchoMv2o+Uvp++xOCEIILfAycClQCOwWQqyUUmae9rTLgQGWr3HAK5bviouSUnKoopzPMg+x6kg2Na2thHp5cW+qetkU2Hwij06TiSGhXc8ip/RNjrhCGAvkSCmPAwgh/gtcBZyeEK4C3pXmORh3CCH8hRARUsqSc604v66Wn61e6YAQFWsdr6nmSHUV7lotl/VLZFHyYCbHxrH+eI56TRSyKisI9vTk0n79T/3OaDKxvbCA1UcPU9fa6sToFFs5IiFEAQWn/VzIj8/+u3pOFPCjhCCEWAIsAfCMieZ4TdfTFio9y9/DwF9mXMK8AYPw8zDX4+8wGvnjpm/pNBkJ8bS+PLVy4dBrtdw1aiI6rZbjNdV8npXJ8uwMShob8XHXE+Ftf40mpfc5IiF0dffszMbF7jzH/EsplwJLAVJTU+VXt9xuV3CK43ybd5yK5iZen7eAWaedGSoXpy+PZHPNxx+yt7QEjRBMjYvn0SnTmZXQH72b6q/iLOLWO2xe1hGvWiFwev++aKDYhucoLm5HYQFeOh3T4hOcHYriAn63YR1BBk8enjyVqwYlE+qlrgr6OkckhN3AACFEAlAE3ADcdMZzVgL3We4vjAPqznf/QHE9Jilx12ovuknaTSZJS3vHWaeL1AiBh06HRnNxdTU1mSRXDkzirlFjnB2K4iB2JwQpZacQ4j5gHeZup29JKTOEEPdY/v4qsAZzl9MczN1Obb+mURQ7SCmpb2mjsr6JivomKhqaTj2ubGiivqWNptY2GlvbaWhpo6mtnaa29vOWaBACvPV6vDzc8T71pcfX4EGIrxchvl4En/zuY/7u7eGuxisoLsUhDX1SyjWYD/qn/+7V0x5L4OeO2JaidEddcysnKmrMX5W1lse1nKisobmt40fPN7i7EeTjhb+nB14e7gT7eOHl4Y6Phx5vD3c89e5nvQIwmSRNbe00WhKJ+auNmqYWcsurqWpoprWjizkWPNyJDfYnLiSAOMv3+JAAYkP88TV4OHyfKMr5qDs/ilVcdShSUXUde44VsvtYIXuOFVJUXX/qbxohiAr0JTYkgJEJkUQG+hLi88Ozdi99z52tSylpbG0/dRVSUW++KimqrudERQ3pJ0r4av/hH1yFxAT5MaZ/DKmJ0YzpH024v+sNjjtbE5rSd6mEoHSbKzVuVDc2szUr90cJwN/Tg9T+0Vw/cTjxIQHEhQQQE+SHzs15JbCFEPgY9PgY9PQLC+zyOW0dnRRW1ZFXUUNeRQ0H8kpYf/Aon+86BPwwQUxNTsDP0zWuIFSL14VFJQSlz+g0mvj+yAm+2HWIjRnH6TSaTiWAW6eOYkxiDIlhQX3y5q5e50b/8CD6h/9vik2jycTRkkp2Hytkd07hqQTh7qZl1pBEFowdzPgBsX3y/1Vck0oIiss7UVHDF7szWLk7k/L6JgK9Ddw0eQTzRiUzKDKkRw6I7R2dVFY3UlHdSGV1I9W1zZhMZ5lCU6sh0N+LkEBvQgK9CQrwRqez/4pEq9GQFBVKUlQot04dhdFkIquwnFVpWXyZlsXa/YeJCPBhwZjBXDUmhahAP7u3qVzcVEJQXNbe40X8a+13pB0vQiMEk5PieWTREKYmJzisCaiz00hmTil7D+aTfayU0op6Kqsbqa1vsWu9AX6ehAR6ExbiS3JiOKOGxpLUPxw3re1ddrUaDUNiwxkSG86v501h46FjLN+Vwavrd/DK1zsYNyCGX82dzJDYcLtiVy5eKiEoLsdkkrzx7S5e/mo7Yf7e/HLuJOanphDqZ//AJ5NJcjSvnLSD+aQdPEF6VhEtrR0IAXFRgUSG+TN4YCQhgd4EW874gwO9CQrwwk3bdRLq6DRSVdNERXXDD64qKqsbOVFYzdZdOQB4GtwZkRJN6rA4Rg2JpV9ssM1XN3qdG3NGDmLOyEGU1NSzYk8mn3yfzq0vLeP/rpjCrVNHqi6titVUQlBcSmVDE498+BXbj+Rz+chBPH7NJXh52D9zWEFxDau/PcjaTRlU1TQB5gRw+fTBjB4ay4jBMfj5GGxef4CfJ4nxIV3+raaumb2H8tl7qIC0g/l8n3YcgNBgH+ZOH8zcmUOIDPO3edsRAb7cc+l4bpw0gsf++zV/W7mZ3ccKeOKG2S5z81npG1RCUFzGrpwCHnx/DQ0tbTx+7SVcPW6IXWe5La3tbPz+CKu/PcSBrEK0GsH4Uf2YOXEQo4fGEhzYO6UWAvw8mTUpiVmTkgAorahn78F8vvk+m3c+28F/Pt3B6KGxXDFrKNPGJqLX62zajp+nB/+840o+2LqP57/cyrV/f59nb5nLiPhIR/47ygVMJQTF6YwmE0s37OLVr3cQG+zPq0sWMSiy67Pt7jhyvIzl6/azYVs2La0dxEQGcM8tU5gzfTDBAc6vtxMe4svcmUOYO3MIZZX1rN2UwepvDvHnF1bj7aXn0inJLJw9gn6xwVavWwjBLVNHMSI+kt+8t5o7Xv6EX86dxOJpo1VvJOW8VEJQnO6p5RtZ9n06V45O5vdXz8RTb1sTUafRxBsfbeP95bsweOiYMXEQV8wcwrCkKJdtTw8L9uX2ayaweNF49mcUsPrbQ6z+9hArvj7AnddPZPGi8TYdyIfEhvPxr2/mjx+v5/kvt1Ld1MKv501xaOxqWNqFRyUExam+2n+YZd+nc/v00fx63hSbD9yV1Y388R9fsj+zkCsvGcrPF0/H20vv4Gh7jkYjGDU0llFDY/nlnTP4x5vf8sZH35GeVcRjv5hLgJ+n1ev0NXjw/OJ5/OWzb3h74x5S+5sHtTmScKnhioq9Lq6ylYpLKatr5C+ffsPQ2HB+MXeSzclg94ET3P7AO2QfK+X391/Og/fO7lPJ4Ey+Pgb+8Mu5/ObuS9mfUcCdv3mX9Owim9YlhODBq6aTGB7E48u+pqbRvu60yoVNXSEoTiGl5A///Zr2TiNP3jQH3Vm6dJ6L0Wjinc928PbH3xMXFchffnM9CTHWt7ufK8bCvEqyDuSTk1VCRxcF6gDc3XUMSIkkZUQsETGBDmmeEkKw4LLhpCSG89jzq7j/sf9y9y1TuXF+qtXr1+vceOqmOdz4z4/4y2cbeH7xPJdtQlOcSyWEHiClpLy1geq2Zmrbm6lpb6a2vYXadvPP7UYj/u4GAvReBOm9CNB7EujuRaDekyC990Ux38AnOw7y/ZET/P7qmcSHBFi9fHtHJw89/QW79ucxe2oKv7n7EgwO6J7a1trB9o1ZbFqbTsa+EzTUmc+oPb306A1d9/5pbW5nxYfbAfAL8GLIqDhmzB3O2GmDcHe37yM2sF8Ybz57K0+9/BX/fnczGYeL+dMDV1o9wC0pKpT75kzkhdXbWLPvMFeMSrIrrr6gw2Skqq2J6rYmatqazY/bzY9r25vRa3UEuHvi727A392TAL35caDeixC990WZNFVCcIC69hYO1hRxoKaI9Ooi0msKqW3v+tLc202Pu0ZLbXsLpi5uy3m76ZkU2p+p4YlMCRtAiIfze8Wc7nzzAnSHySR5e+MeRsRHcN2EYTat47X3t7Jrfx4P3HUJC2YPt/vD29TQyjsvb+CbVftpamglJNyPiTNTSBkRS/LwGKLjg9GcJVGbTCbyj1WQeSCfrAP57N2ew3ffZOLjZ+CyBaO59d6ZeHjanqy8vfQ88dv5fLRiN/9+bwvvfLKdn9wwyer13D59NGv2ZvP2xj3MHTnogjzglbbUs6X0KFvKjrK9/DjNxh+XOtcKgZ/OQJupk6bO9i7XE+juyfDAaIYFRjEsIJqhAZH46C78MR0qIdig02Ti+/JjrCvKZF91AbmNVYC5Gmh/nxBmRgxisH8kwXrvU2cd/u6e+LkbcNeYm0ZMUlLX3kJNezPVbU1UtzVT095ERm0Jm0uPsq44E4DB/hFMDRvAtPABDA2IQuPED7GjDiB7jhdSWFXHz2dPsGmdBzIL+Xh1GgvnjGDhnBF2x3Nobx7PPvIplWX1TL98KJddNYphYxLOmgDOpNFoiB8QRvyAMOZeMwaj0cS+HcdYv2Ivn7/7HTs2ZfPg09cycHCUzTEKIbhpwViO5Vfy7mc7mDw2kUH9wqxah1aj4bqJw3jis2/JLCxncIx1y7siozRxoLqQzZYkkF1XBkCEwZcrY4eR4hfxgyvwAL0XvjqPU5+jdpPRcuVuuYJva6aitZFDtcWkVxexsfQIYP5s9/MJYVRQDHOiBjMuJB6tuPCu5FVC6CYpJZm1JawoSGdN4SGq2prw1XkwOiiWq2KHMywgiqEBUXjrunczUyMEAXrzZWo/nx+2e0spya4rY0vZUTaXHuW1w1t55fAWBvqG8vCwOYwP6dtzGn+24xA+HnouGTbA6mVbWtt58uWviAj1495bptoVR2eHkQ9e28iyNzYTFunPc//5KSnDY+1aJ5iL3aVOGkDqpAHMvXYMf3vkU/7v1te49WezuPaOKWjtqGf0yztnsif9BE++uJbXn70Fd511H+HLRw7ibys28/nOQ30+IWwpPcrTB9eR21iFVghGBsbywOBLmBo+gAE+Id062XDXaAn18CHUo+v5JuraWzhUU8yBmkIOVBextjCDT/L2Eurhw7zoIcyPHc4gv769H0+nEsJ5lLc28MWJ/awsSOdYQyU6jZbp4QOZHzOMqWGJuGsdvwuFECT7h5PsH87dg6ZQ09bMptIjvJy9mTu2vculkck8OOQyorz8Hb7tnlbX3MqGg0dZNG4IHlYezABe+2ArRaW1vPjn6/E02N4MU1xQxTMPfsLhQ4VcetVI7n1oHp490DNp+Jh+vPLZ/bz4lxX851/rSfvuKL998hpCI/xtWp+vtwcP3nsZv3tyOf/5ZAdLbpps3fIGDy4bPpA1+7L5zfypGNxtGxXtTHmNVTyVvo4tZUeJ8wrk2dSFTA0bgJ+77aVHzsbP3cCksP5MCusPQKuxg02lR1iZn867x3byVs52BvmGcWXMUBbEjSBI7+XwGHqTXUczIUQgsAyIB/KA66SUNV08Lw9oAIxAp5Qy1Z7t9paV+en86cBqmjvbGR0Uy59GzGN2VEqPvPHOJUDvycK4EVwePZj/5Gxn6eFtpFWe4K3Ji/vc2cmmjGO0dxpZMGaw1cuWltfx2dp9XH35SEYOjrE5htbmdh6+622aGlp55LkbmHrZEJvX1R0+vgYefvZ6xk4ZxMtPruL3977Dy5/8HJ0NCRFg4uj+zJmewgdf7OLaK0ZZPUZhwdjBrErL4vvDJ5g1NNGmGMB8JdvbDlQXctf372OSkt8NuZSb+4871QzbGzy0OuZEDWZO1GCq25pYW5TByvx0nsvYwGtHtvLEyPlcFpXSa/E4mr2NYA8B30gpBwDfWH4+mxlSyhF9IRk0dbbzcNoXPJi2nGS/cNZeeh/vT72D6xJG93oyOJ2HVsc9g6by2Yy70Wm03Lb1HTJqS5wWjy0yC8vx1OtIjgq1etnNO48iJVw3b7RdMXzw2kbKimt5/J8393gyOEkIwSXzR/LI324g/3gFn769za71XT8vFaPRxHe7j1m97PC4CNw0GjIKy+yKAXp3xrS0ynx+8t17+Lt7smLWvdwxYGKvJoMzBeq9uLnfWJZN/ykrZ91LvHcQv9z1CX/av5rWLm5m9wX2JoSrgHcsj98BFti5PqfLrivl2o1LWZF/gJ8nTeM/k28j3jvo/Av2ogSfIN6begdeOnfu2PYOB6oLnR1St2UVlpNk46Q2m3ceJTE+hKhwf5u3f/xIKZ+9+x2zF45maGrv34sZM2UgU2cP4cOlmyjOr7J5PYnxIUSE+rF55xGrlz05O1tWYbnN2+9tuyryWPL9+4R4+PDelNuJ8vR3dkg/MMA3lPen3smdiRP4b+4ebtj0JsfqK5wdltXsTQhhUsoSAMv3s532SeBrIUSaEGLJuVYohFgihNgjhNhTUdF7O1RKyQfHd3H9pjdo6mznP5Nv477k6S47JiDGK4B3p9yOv7snP/nuPQ7W2DaStTcZTSayiytIjrb+6qCqpomD2UVMG2f9jeiTpJS89NeV+Pga+OmvZ9u8Hnvd/bsr0LlreeXp1TavQwjBtPED2JOeT2NTm9XLJ0eFkllY7pRmH2vtrjzB3ds/IMLTn3en3E6YwdfZIXXJXaPlt0Mv47UJN1He2sC1m17n8xP7+sQ+Pum8RzshxAYhxKEuvq6yYjuTpJSjgMuBnwshzto9REq5VEqZKqVMDQmxveKlNaSUPLJ3BU8cWMv4kH4sn3k3Y0Pie2Xb9ojy9Oe9KbfjqzPw0J4vMPXCG0/aUdLsREUtLe0dNjUXbdudg5QwbbztCSE7vZDMffncfO8MfGyoDeQoQSE+XP+TqezedoS8o7Y320wbN4COTiM79uVavWxydCjVjc1U1DfZvP3e0G4y8lDacsINfrw75TaXG5fTlanhA/hi5j0MC4ji0b0reSJ9rbND6rbzJgQp5SVSyiFdfK0AyoQQEQCW711eg0opiy3fy4HlwFjH/Qv2+yh3D1/kH+CeQVN4ZcKNBPahngJhBl9+kTKD442VPX6VYG9zcXldIwCRNsz9W1Rai7tOa1dpirJic3+H4WP62bwORzkZQ1lJrc3rSOpvniqzsPRH/TjOKyrQfJZ98jVxVbsr8yhuruOBwZf0qc9lqMGHNyffyq39x/Hh8d18kX/A2SF1i73tISuB2yyPbwNWnPkEIYSXEMLn5GPgMuCQndt1mKKmWv526GumhCVyf/IMpw78stX08IFoheDbksPODuWcGlvNTRu+Buu7dzY2t+HlqbdrcJzOUkais8No8zocpaPdXBdJ5277TVGdTou7uxtNNjQZeVvKfDS0Wr9sb/q25DAeWjcmhfZ3dihW0woNDw69jNFBsfz1wFoqWl07+YL9CeFp4FIhxFHgUsvPCCEihRBrLM8JA7YJIQ4Au4DVUsqv7NyuQ0gp+cuBNWgQ/GnEvD6ZDAD83Q2kBsXxjYsnhIYW88HH24aaQ03N7Xh52jdOwE1nPvi6RELoNMdg7cCyM3l7utPY3HX5hXMu52HelydfE1ckpWRjyWEmhfbH4Nb3xkuAOSn8ZeR82kydPHNwnbPDOS+7EoKUskpKOUtKOcDyvdry+2Ip5VzL4+NSyuGWr8FSyr86InBH2FCSzeayo9yfPIMIT+ubMVzJrMgkjjVUcKKx2tmhnFVDq/nAdfJgZI2m5ja87agHBP87Gz95du5MHe3mhKCzs/idl6eepmbrD+o+ltegsdX6ZNJbMutKKWmpZ1ZE3y7El+ATxJKBk1ldeIjvyq3vJtybXLMLTS95N2cnCd5B3NJ/nLNDsdvEEHOb9P7qgh7djj33rds7zQdiW0YoG00mu2sp+fmb26Bz7biR6ygncswx+PjbN65FIDAaTVYvp7e8Bq1nKendHT3dheHke3lCqPPv+djrroGTiTD48v6xXc4O5Zwu2oRgkpKsuhLGhyS4bNdSa3hZaii1m3qwOcTOA/LJMgnNbdYP2omNDCSvsMquLnz9BoWTPDyG9/79DTVVzmvPLSuu4b+vb2bUxEQiY2wf49Le0UlRWS2xUYFWL9vcbr4y8NLb1xTTkzOmdRjN72Vvt7472dFJeq0bqcHxZLr4QNK+fyS0UUFTDU2d7ST7Rzg7FIc4WXnRKK0/W+wtJ+8dNLZZ38TRLzaYltYOSivqbd6+EIJf/XEhLc3t/PNPXzilf7jJZOLvj32OlJJf/H6+XevKL6rBaDTRP8767tlNdjTf9ZZOy3v5QqkqmuIXTnlrA1VtrtvV98LY0zbIrisFINkv3MmROIab5UPT2ZNXCHY6efBpsqHdul+subvp8fxKu2KI6x/K7b+4lB2bslm/cp9d67LFyo92cmB3Lkt+O5fwaOvP7E93vMC8L/rFWn+VcfLegZfe/kmFekqnNL+XL4QreIBkf/OxJru21MmRnN2FsadtcLiuDIF5yPmF4GQPqc4+cIVgS8+Wk+MPjhy3v/1/4S0TGDo6nlefXs2urb3XM2vb+gzeemEdY6cOYs4i++oxgXlfaLUaYiKsTyz29Pg6qaevsIwm83u5J5uletMgy8nn4Xrn38M6m4s2Ifi7G5BAXceFMen40XrzmMBYL/vOOntSZIB5MFRBVZ3Vy3p76RmWHMW6zZmYTPYdiDQaDb976hrCowP4w8/f460X1vVoV9T29k7+/fSXPPHARyQMCOf//rTQ7hvknZ1G1m/NYsywOHQ668cynHwNIgPtKwPRkz21Yyzv5ZyGvlNz6Vxq2poB87HHVV20CWGwfyQAGTWufZOnu9Kq8gEYGWh7WeieFhnoi95Ny7Ey24q6LZg9gsLSWtIOnrA7lpBwf/7x3t3MvXYMH7+1ld/95E0qSmvtXu+ZSgqreWDxUlZ+uIOFt07kuXd+SkCQ/eUXtu0+RlVNEwtmj7Bp+eNlVQR4GQj0dl4Jj/MZHWyerCitMt/JkThGRm0x8L9jjyu6aBNCkn84gv+9SH1dWlU+/X1CCNC77gdcq9HQLyyIY6W2JYTp4wfg72tg+TrHlAHQe+j4xWNX8eDT15J7pJSfXfsyn72zjapy229cn1ReUsuyNzfz8+tepqSgmj+8cBN3/3auzXMgnGn5uv2EBvswYZRtFVuPlVXRP9y1qvieKdLgR7jBlz1VF05C0Gvc6O/TOzXabHHRzpjm5eZOP58QDtX0/YRglCb2VRVwRXTv1Pa3R//wQHbn2Fau213nxtyZQ1i2cg/lVQ2EBnU97aG1ZswdzoCUKP7x+HJef/4r3vj7OoaPTWDyJYMZMa4/UXFB523ikVJSkFvB/p3H2fr1IQ6m5QEwYmw/fvWnhYRHBTgkVoD84mrSDubz0xsn2TQdp5SSY6XVzB3l2gO+hBCMDoplV2UeUkqHzentLIdqSkjyC3fpm+QXbUIAGBcSzyd5e8lrrHK5OQ+ssbHkCI2dbUzshQE89lQ7BUiKDOXLtGxKaxsI97f+gL7gsuF8/GUar7y3hcd/dYVdsZwuOj6Y59+5i8K8SjauOcDGNem89NdVAASH+hI/IIywyK4P6o0NLaTvyaWm0jy2ISYhhMX3zWLG3OFE2NmT6ExSSl76zyb07m5cOWuYTevILa+hobWNQZG2FwrsLRND+7G68BA7K/P69Fzi2XWl7K3K5ycDJzo7lHO6qBPCPYOmsjI/nSfTv+K1CTf1yTMQk5S8dngrMV4BzOzhIf6O2DuTkuJ4bhV8l53H1eOHWr18ZJg/i68ez1vLvueSyUlMSnVs0bPo+GBu/dksbrl3JiUF1ezbeYwDu45TkFtJTlbXV5PuHjpGjO3H8LH9GDG2n93dSc9lw7Zsvk87zv23TycowLbqn1uzzeWyJw2Kd2BkPeOK6KG8kPktr2RvYVxwfJ/8jEopeeLAWvzdDfxkwCRnh3NOF3VCCPHw5r7k6Tx9cB0bSrK5NDLZ2SFZ7d1jOzhUW8xToxe49KXoSf3DgogI8GGrjQkB4NaF49i8/QjPvvo1b/1tsc0HxnMRQhAZG0RkbBBXXOsa1dpLK+p54c1vSRkQwTVzR9m8nq1ZuSSGB9ndw6g36LVu3D1wCk+kr+WzE/u4Jt72/9tZVhakk1aVzxMj5zt1Ct7ucP0jSA+7ud9YBvmG8af9qylvbXB2OFY5XFfG3zO+YVbEIK6Ksa35oLcJIZiSlMD2IydO1Taylk6n5fe/nEtjUxu//9sK2u2ox9NXtLZ18PAzX9BpNPL7+y+36d4BmAcFph0vYkpSvGMD7EE39hvD+JAEnkr/irxG26cddYaiplqeTP+KEYHRLIwb4exwzuuiTwhuGg3Pjbmaps42lnz3gUtXCz1dYVMNv9i5DD+dgT+PvLJPXUpPSY6nua2DHUdtL8Q3ID6UR+6bw8HDxTz23CpaXLhqp70am9p46OkvyMkr54+/mmdT7aKTtmTl0mk0MSXZ/vb43ir8oRGCp0YvQKfRct+OZZS12N8LrDfk1Fdw1/fvI5H8LXVRnyivf9EnBIBE3xBeGncDpS11XLtpKRuKs50d0jkdrivjxs1vUdfewovjr+9TM0mBue062MeTD7faVzpi1qQk/u+ns9i+9zg/f2wZldWuPwGJtUrK67jnkQ/Zl1HAwz+bw4TR9nUc+GDrPqKD/BjVL8pBEfaOcIMv/xx3HSUtddy05S1yG+wrYdLTVhcc5PpNr1Pf0crL428k2stxvcx6kkoIFpPC+vPZjLuJ8wri/p3LeO7QejpNrlcGYnflCW7d+jZaIXhv6h2MCIx2dkhW07lpuXHyCL47fIKcUvs+2FdfPpKnH1pAQXE1Sx76gKN5F8aoVoCMIyUseegDKmsa+ftj1zB3pn3dig+cKOHAiRJumTISbR+433SmcSEJvDv5Nlo7O7h5y9s9PmWsLdqNnfzlwBp+s+dzkv0j+HzG3YwJjnN2WN3W994VPSjKy58Ppt7B9QmjefPo99z53bsuNe3dN8XZ/PS79wjWe/PhtJ/06TpM144fht5Ny/tb7C8wN3F0f/791xuRUvKzRz9ie9pxB0ToXBu3H+b+x5dh8NDx2pM3MXporN3rfG/zXnw89CwYM9gBETrH4IBIPph2J55u7ty+9R2XmnCmuLmOW7f+hw+P7+aOxAm8PXkxoQbHjJXpLSohnMFd68YfR8zj6dELOFhTxJUbXmZZ7h4aO5w31WBDRyuvH9nGL3Z+TJJfOB9MvZPIPj7DW4C3gfljUliVlkVlg/3lgAfEh/L6M7cQExnIg08v5z+fbqe5pe/dV2hqbmPph9t47LlVDEoI5bWnbiYu2v4xMkXVdaxPP8o144fgZUdBO1cQ7x3Eh9PuJMYrkHu//5B/Z2+mqdN5r3V9eysfHt/N1Rtf41hDBf8cey2/G3oZOo3t82U7i13dToUQ1wJ/BJKBsVLKPWd53hzgn4AWeENK+bQ92+0NV8UOJ9kvnD/s+5I/7l/NMwe/5tLIZBbFjWBMcHyP3yCSUnKwpphleXtYW5hBi7GD6eEDeW7M1Xi5OfED7cA7iYunjWb5zgxeWvs9f7zuUrvXFxzozct/uZ6/vvQVb3z0HZ98uZfrrxzNojkj8fZy3br/APUNLXyyei+frNlLY1Mbs6el8Lt7LkNv5xSbJ/3jy23otBpumjzSIetztlAPH96dcjuP7VvJi1mbeOvo98yLGcr18amnykz3JKM0saM8l8/z97OhOIt2k5GhAZE8M3oRCT59d5Crve+2Q8Ai4LWzPUEIoQVeBi4FCoHdQoiVUspMO7fd4wb6hfHRtDs5UFPE8hP7WFOYwcqCdKI8/VkQO5yFsSOI8vJ36DabOtr4svAgy3LTyKorxVOrs7zRRzM4wLlFsRxdhjg+JIBbpo7kP5vSuGpMCiMT7L/RafBw54nfzOfQ4WLe/WwHSz/cxodf7OaauSO5dt5o/Hxcqx94dW0T/121h+Vf7aeltYOp4wZw2zXjGdQvzGHb+C47j3UHjvCz2RMID+hbTRjn4uvuwQtjr+VATRHLcvfwxYkDLMtNY1hAFNcnjObyqCEY3OybEe5MJxqrWZ6/nxX5ByhtqcdP58G18aNYGDeSFL/wPtXbryvCETXNhRCbgN90dYUghJgA/FFKOdvy88MAUsqnzrfe1NRUuWdPlxcdTtHS2cE3Jdl8fmI/OyqOI4FITz+S/cLNX/4RJPuFE27w7dYbo93YSV5jFUcbKsipL+dofQXbK47T3NlOkl8Y18WP5sqYYXjrXOPs9oktm/g44yDp997vsHU2tbZz9fPvAfDpA7c4fAavw8fLePfTHWzeeRSDh46Fs0ewcM4IIkKd2+RWWFLDZ2v3sXJ9Oh2dRmZOHMTiq8fRL9axhc9qGlu4+vn38DHo+fj/bj41l7Ij9PvX89w/djz/N941Rt/WtbewsiCdZbl7ONZQiY9Oz4SQfiT6hpDoE0qibwjx3kHdasqRUlLcUkdWbSlZdSWW76WUttSjQTAprD+L4kYwM3wQ7lrXGt8rhEiTUqbasmxv/CdRwOkdzguBs85qL4RYAiwBiI21/0aaIxnczGfr82KGUtRcy9dFmRyqLSGrtoRvSw6fak3xdzeQ6BOKwU2HVmhwExrcNBrchBat0NBibCenvoITTVUYLQlZKwSxXoHMiUrh2vjRDA+I6vNnG93h5eHOUzfN4faXP+Gp5Zv4642zHbr+Qf3C+OvvruJ4fiXvfb6T/67aw4crdpMQE8SEUf0YPyqBIYMicXfggbIrbe2dpGcVsWPvcbbvzSW/uBqtRjB7Wgq3LBpHbKTjy11IKfnTpxuoaWrh3z9d4NBk4Ir83A3c2n8ct/QbS1pVPp/m7WN/dQEbirMxWT6dbkJDnHcQiT4heGh1GKWJTmmk02SiU5owShPNne3k1JdT19EKgAZBgk8QqUFxDAmIZE5UCmEG1x/lbYvzvkOEEBuArhrlHpVSrujGNro6qp31skRKuRRYCuYrhG6s3ymiPP25Y8D/ClU1dbZzpK6MTMvZRF5jFXXtLXRKE50mI0ZposNkfsPpNFr6+wRzaVQyA3xCSPQNJcE7yOXONHrLyIQo7rpkLK+t30n/sEDunDnG4dvoFxvM47+6gp/eMImtu3LYvvc4H69O48MVu9G7uzEsOYohgyJJTgwnPMSP8BBfPA223atpam6jtKKekvJ6jp2oYO+hfA5mF9HeYcRdp2XE4BgWzhnBlLGJhIf0zIFFSsmLX33PNwdzeGDeFJKi+m6PNGsJIUgNjiPV0t2z1dhBbkMVOQ3lHK0vJ6e+guy6UjqlCa3QoNNozCduGi1uQoO7xo3ZUSmnrvgH+oY5vOnJVZ33CCSlvMTObRQCp8/aEg30/ZrTZ/Byc2dkUAwjg1x3ghpXds+l48mvqOUfq7chhOCOGTZd8Z5XVLg/N8xP5Yb5qTS3tJN2MJ+0g/nsPZTPu5/txGj839gTPx8D4aG+hAf7Ehrsc9aZyTo6jJRVNlBaXkdJRT0Nja0/+HtifAgLZ49g1NBYRg2JwdDDvXyklLz01XZe37CLq8cNYfE0+6frPJu+ML2lh1ZHsn94r9xs7ut645R0NzBACJEAFAE3ADf1wnaVPsRNq+HJm+YA8PcvtyKA23soKZzkaXBnythEpoxNBMw9ffJLaigtr6ekvI6yinpKKurIK6xi14E8jGeZulOrEYQF+xIe4kvKwAgiQs1XGOEhfsRE+OPbizeypZS8vG47Szfs5OpxQ/jDNZeg0bj+QVtxDfZ2O10IvAiEAKuFEPullLOFEJGYu5fOlVJ2CiHuA9Zh7nb6lpQyw+7IlQvOyaQgkTz/5VaEENw2vefObs/k62NgiI+BIQNdd4rD8/n3uu28tn4ni8aqZKBYz66EIKVcDizv4vfFwNzTfl4DrLFnW4prsHeCnPNx02p46qbLAXhu1RZaOjq4a9bYPllqoTd1GI28uPZ73t64h0Vjh/D4tSoZKNa7OO9iKjbprU5PJ5OCm1bDy19t59uDx3hk0QxGxPfdM/eetCungKeWbySntIrrJgzj0UUzVTJQbKISguKS3LQanrxxDlOT+/Hcqi3c+uIy5qem8H9XTCbYt29Vd+0ppbUNPL9qC1/tP0JUoC8v3H4lM4f0vyi6Kys9QyUExWUJIbh85CCmpSSwdMMu3tmcxreHcvjZ7AncMGk4Om3fqxXjCO2dnby7eS9LN+zEZJL8bPYE7piRiscFPs5A6XnqHaS4PE+9O7+6YjILxg7m6S828eyKzXy+8xAPXDmViQPjLprmEaPJxJbMXJ5ftYUTlbXMGprIb+dPJSqwbxc6VFyHSghKnxEfEsArP13AxozjPLtiE/e+vpyIAB/mjU7mytHJJIT23OT2znS0pJJVaVmsTsuivL6J+JAAXr1rIZP60DSYSt+gEoLSpwghmDmkP5MGxfHNwRxWpmXx5je7eX3DLobGhnPl6GQuHzkIfy/XKmJnrcqGJtbuO8yqPVlkFZXjptEwOSme36UmM3Nwf3RuF2dzmdKzVEJQ+iS9zo25o5KYOyqJivpG1uw9zMo9mTy5fCPPrtzM2P4xjOwXyfC4CIbFRrj8HAANLW2knyhhf14x+/KK2XOsEKNJkhIdykMLpjNnxCCCfDydHaZygVMJQenzQny9uW36aG6bPprDxRWs2pPFd4fz+Pe67UhpnqR9QEQwI+IjGB4fyaDIEKID/fDUO6c+TVNrO4XVdWQXlbM/z5wEjpVV/SDW26aN5srUZBLDg50So3JxUglBsYrLVhu0GBQZwqD5IfyGqTS0tHEwv5T9ecXszyvmy7Rsln2ffuq5QT6exAT5ERPkT0yQHxEBvoT6eeNr0ONj0ONr8MDHoMdN271BcR1GI40t7dS3tFLf0kZDSxtVDU0UVNVRUFVLQWUdBVV1VDc2n1rGx0PPsPgIZo8YyIi4SIbGhrv81QyYS2QoFx6VEJRu62t9eXwMeiYOimPiIHPVS6PJRE5pFbll1f87SFfVsSungFVpWWddj6deh4+H/qyjpTtNJhpb22hu6+jy70JAuL8PMUH+TE/pR0ywHzHB/vQPC6RfaFCf7iWlhjxcWFRCUC4aWo3GfAUR+eNJaNo6OimpbaC6oZmG1jbqm81n+eavVhpb2jGd5axYI4T5isJTj4+HHl9PD3wNenwNegK8PYkM8MHdTX3UFNen3qWKgvkmdXxIAPEhAc4ORVGcRlUMUxRFUQCVEBRFURQLlRAURVEUQCUERVEUxUIlBEVRFAVQCUFRFBuoYWkXJrsSghDiWiFEhhDCJIQ464zoQog8IcRBIcR+IcQee7apKIrrEH1uuKJyLvaOQzgELAJe68ZzZ0gpK+3cnqIoitJD7EoIUsosQE3ZpyiKcgHorXsIEvhaCJEmhFjSS9tUFEVRrHDeKwQhxAYgvIs/PSqlXNHN7UySUhYLIUKB9UKIbCnllrNsbwmwBCA2Nrabq1d6g5+HgeaODmpaWggw9O0JaBT7lDQ0AODnoXdyJIojnTchSCkvsXcjUspiy/dyIcRyYCzQZUKQUi4FlgKkpqaqzgwuZFxUNAA7iwqZkzjAydEozrS9MB+AcVExTo5EcaQeL24nhPACNFLKBsvjy4A/d2fZpo52dhUV9mh83dETt0gc3TvD0TF66tzp5x+A/rQqncPCwvHU6ViTc5hQLy+r19nbd5r66r2t3p5rwJatrT+eQ6CHgYFBP5zAp62zk2M11bR0dl0K3FaO3iWyBzrOXghTRNiVEIQQC4EXgRBgtRBiv5RythAiEnhDSjkXCAOWWz6cbsCHUsqvurP+4zU13PDZMntCVOzgptHQLyCQpOBgkoNDSAoKYXREJF8eOcyXRw47OzzFyS7rn8jmE7lkVVSQXVVBdkUFubU1GC+EI+NFSrjyzEdJw4bJt1Z/adUyjs78PbF7HH520gMx1rW1kl1ZSXZlBVmVFZQ0mtuMw7y8eOaSOVavry+c9boSV7+aklLyy3WrqW9rAyDa15ekoBCSQ0IYGBiMr74H7i04eKf0xBgKR1+U2hLjpNi4NCnlWceFnYtLz4fg7e7OxBh1Y9lZ5g383+O61lb+vGUjX+UcYWpcvNNiUlyDSUrq29q4aehwfjdxSs8kAKXXqdIVSrf4eXgQ7Onp7DAUFxPq6aWSwQVEJQRFURQFUAlBURRFsVAJQVEURQFUQlAURVEsVEJQFEVRAJUQFEVRFAuVEBSr9PUBX4pjuPKAVsV2KiEo3dY3KwMpPamPlotSzkIlBEVRFAVQCUFRFEWxUAlBURRFAVRCUBRFUSxUQlAURVEAlRAURVEUC5UQFEVRFEAlBEVRFMVCJQRFURQFsDMhCCH+JoTIFkKkCyGWCyH8z/K8OUKIw0KIHCHEQ/ZsU1EURekZ9l4hrAeGSCmHAUeAh898ghBCC7wMXA6kADcKIVLs3K6iKIriYHYlBCnl11LKTsuPO4DoLp42FsiRUh6XUrYD/wWusme7inOEefswOCTU2WEoLmJISCghnl7ODkNxIDcHrutOYFkXv48CCk77uRAYd7aVCCGWAEssP7YJIQ45LMKeEQxUOjuIbnBYnIKbHLGas7no9mcP69E4VwE3OmZVan86ziBbFzxvQhBCbADCu/jTo1LKFZbnPAp0Ah90tYoufnfW2rlSyqXAUst690gpU88XozP1hRhBxeloKk7HUnE6jhBij63LnjchSCkvOc/GbwPmAbNk10XSC4GY036OBoqtCVJRFEXpefb2MpoDPAjMl1I2n+Vpu4EBQogEIYQ7cAOw0p7tKoqiKI5nby+jlwAfYL0QYr8Q4lUAIUSkEGINgOWm833AOiAL+FhKmdHN9S+1M77e0BdiBBWno6k4HUvF6Tg2xyjUVHiKoigKqJHKiqIoioVKCIqiKArgQgmhr5TBEEJcK4TIEEKYhBBn7X4mhMgTQhy03FuxuRuYrayI09n7M1AIsV4IcdTyPeAsz3PK/jzf/hFm/7L8PV0IMaq3YrMixulCiDrLvtsvhPhDb8doieMtIUT52cYWucK+tMRxvjidvj+FEDFCiI1CiCzL5/yXXTzH+v0ppXSJL+AywM3y+BngmS6eowWOAf0Ad+AAkNLLcSZjHvixCUg9x/PygGAn7s/zxuki+/NZ4CHL44e6et2dtT+7s3+AucBazONtxgM7XTDG6cCXznovnhbHVGAUcOgsf3fqvrQiTqfvTyACGGV57IO5dJDd702XuUKQfaQMhpQyS0p5uDe3aYtuxun0/WnZ3juWx+8AC3p5++fSnf1zFfCuNNsB+AshIlwsRpcgpdwCVJ/jKc7el0C34nQ6KWWJlHKv5XED5h6cUWc8zer96TIJ4Qx3Ys5sZ+qqDMaZO8FVSOBrIUSapRyHK3KF/RkmpSwB85scOFuxJGfsz+7sH2fvw+5uf4IQ4oAQYq0QYnDvhGY1Z+9La7jM/hRCxAMjgZ1n/Mnq/enIWkbn1dtlMGzVnTi7YZKUslgIEYp5nEa25czDYRwQp9P3pxWr6fH92YXu7J9e2Yfn0J3t7wXipJSNQoi5wBfAgJ4OzAbO3pfd5TL7UwjhDXwG/EpKWX/mn7tY5Jz7s1cTguwjZTDOF2c311Fs+V4uhFiO+dLeoQcwB8Tp9P0phCgTQkRIKUssl7PlZ1lHj+/PLnRn/zi7NMt5t3/6gUJKuUYI8W8hRLCU0tWKtDl7X3aLq+xPIYQOczL4QEr5eRdPsXp/ukyTkbiAymAIIbyEED4nH2O+Ye6KVVtdYX+uBG6zPL4N+NGVjRP3Z3f2z0pgsaVHx3ig7mQTWC85b4xCiHAhhLA8Hov5c1/VizF2l7P3Zbe4wv60bP9NIEtK+fezPM36/enMO+Vn3BHPwdzetd/y9arl95HAmjPunB/B3LPiUSfEuRBz5m0DyoB1Z8aJucfHActXhqvG6SL7Mwj4Bjhq+R7oSvuzq/0D3APcY3ksME8AdQw4yDl6njkxxvss++0A5g4bE3s7RkscHwElQIflvfkTV9uX3YzT6fsTmIy5+Sf9tGPmXHv3pypdoSiKogAu1GSkKIqiOJdKCIqiKAqgEoKiKIpioRKCoiiKAqiEoCiKoliohKAoiqIAKiEoiqIoFv8PkXo5o15bOhoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "osa_x = np.linspace(-2, 2, 50)\n", "osa_y = np.linspace(-2, 2, 50)\n", "(x,y) = np.meshgrid(osa_x,osa_y)\n", "z = np.exp(-np.sqrt(x**2+y**2))*np.cos(2*x)*np.sin(2*y)\n", "ax.contour(x,y,z)" ] }, { "cell_type": "markdown", "id": "3ea48595", "metadata": {}, "source": [ "### 3D visualizace" ] }, { "cell_type": "markdown", "id": "3375491d", "metadata": {}, "source": [ "Máme stejnou funkci $z(x,y)=\\exp(-\\sqrt{x^2+y^2})\\cos(2x)\\sin(2y)$, kterou nyní chceme vykreslit v 3D grafu. Nejdříve vytvoříme trojrozměrnou osu:" ] }, { "cell_type": "code", "execution_count": 46, "id": "5bd8cf3e", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAADzCAYAAACrFtvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABcyElEQVR4nO19aXhb5Zn2fWQttrzJltc4ju14i3fH2QgzQIeWshRIaEtLC0MZyrRAoaXfDNPyzXSGtgyFi37ttIVuFy18DGVaSMpWAgxfodsEAgmJ93jfN9laLFn78n4/nPflSNZyjqQjLzn3deUC29LRkXTu8z7v8zz3/XCEEMiQIWNrQrHeJyBDhgzpIBNchowtDJngMmRsYcgElyFjC0MmuAwZWxjKGH+XU+wyZEgPTqoDyyu4DBlbGDLBZcjYwpAJLkPGFoZMcBkytjBkgsuQsYUhE1yGjC0MmeAyZGxhyASXIWMLQya4DBlbGDLBZcjYwpAJLkPGFoZMcBkytjBkgsuQsYUhE1yGjC0MmeAyZGxhxNKDy5AAhBD4/X5wHAeFQgGOk0wOLOM8h0zwFCMQCMDr9cLpdAIAlpeXkZ+fD41GA6VSCY7jZMLLSBpkgqcIdNWenp6Gw+EAIQRZWVmYmpqCRqOBz+cDACgUCqhUKqhUKqSlpcmEl5EQuBiDD2TLpiSAEAKv1wu/34/R0VFMTU2hvLwcLpcL8/PzyMjIgF6vR15eHnJycthzaAivVCoZ4RUKOW2yBSHZHVxewSVGIBCAx+NBIBDAxMQE5ubmUFpaivLycnAcB4/Hg/LycrjdbhgMBgwPD0OpVEKn00Gn0yEnJwcejwcejwcAZMLLEAWZ4BKBhuRerxcejwc9PT3Izs5GbW0tVlZW2OM4joNSqURubi6KiooAAG63GxaLBQsLCxgaGoJarWaEz87OlgkvQzBkgksAQghbtY1GIwYHB1FfX4+CggIYDAaEbotCf9ZoNCguLkZxcTGAVcKbzWbMzc1hcHAQGo0GeXl50Ol0yMzMXEN4lUoFpVIpE16GTPBkg4bkfr8fIyMjsNls2Lt3LzQaDYDVFZsSmu6zY0Gj0aCkpAQlJSUAAKfTCYvFgunpaaysrCA9PZ0RXqvVwu12Y3p6GiqVCvn5+YzwNEsv4/yBTPAkgRACn88Hn88Hp9OJnp4eFBYWYs+ePWFJRYnOJ7xQZGRkICMjA6WlpSCEwOl0wmw2Y3JyEisrK9BqtSCEIDc3FzqdDm63G263G4SQoHBeJvzWh0zwJIDWtgOBAObn5zE2NoampibodLo1jw1H6ERGOHMcB61WC61Wi7KyMhBC4HA4MDIygsXFRczPzyMzM5Ot8BzHwe/3s+enpaUFhfQy4bcWZIInAH4ize/34+zZs/D7/di/fz9UKlXY54QSPNmE4jgOmZmZyM3NRXp6OoqKimC322E2mzEyMgKXyxVE+PT0dLhcLvZ8mfBbCzLB4wQNjTmOw8rKCnp6erBjxw6UlZVFJUU4gieygscCx3HIyspCVlYWysvLQQjBysoKzGYzhoaG4Ha7kZWVxQiv0Whkwm8hyASPAzQkf/vtt1FeXo7Z2Vm0trYiKysr5nNTTfBwr5+dnY3s7Gzs2LEDgUCAEX5gYAAejwfZ2dlBIT29kQEy4TcbZIKLAD8k9/l8cLlcWFlZwf79+5GWliboGKkmdCwoFArk5OQgJycHFRUVCAQCsNlsMJvN6O/vh8/nQ05ODvLy8pCbmwuO43D8+HF0dHQAAMvOy4TfmJAJLhD82rbFYkF/fz9UKhUaGxtFXdTrvYLHgkKhQG5uLnJzc1FZWYlAIIDl5WVWlvP7/XC5XDCZTIzwXq+XfQY0S69UKmWl3AaATHAB4Lebjo2NwWg0oqOjA52dnQgEAoJXb2BtUm2jETwUCoUCeXl5yMvLQ1VVFfx+P959913YbDZMTk6ychxd4f1+P3w+HwghUCgUQSG9TPjUQyZ4FPBr2263Gz09PcjNzcW+ffvYxSqWnBud0LFA6+c7d+4EAPj9flgsFlgsFkxMTIAQAp1OFyScoUo52pZL/8mElx4ywSOAH5IvLS1haGgIu3btgl6vZ49RKBRxkXUjh+hikZaWBr1ezz4Xn88Hi8UCk8mEsbExcBwXRHifzwev1wtAJnwqIBM8DOhFGAgEMDQ0BIfDgX379kGtVgc9juM4BAIBUcfe6HvwRKFUKlFQUICCggIAgNfrhcViwdLSEkZGRpCWlhZEeK/XG0R4v9+PzMxMmfBJgkxwHvghucPhQE9PD0pKSrBr166o7aZiQJ9js9lYM8xWIngoVCoVCgsLUVhYCADweDywWCxrpLF5eXnIzs5Gd3c3mpqaWBttqHBGJrw4yAQ/B3676dzcHCYmJtDU1ITc3NyIz1EoFKJXcEIIrFYrRkZGQAiB3W5HVlYWCCHIy8uL2AG3VaBWq1FUVLRGGjs/P4/BwUG4XC7Mzs4iPz8fWVlZ8Hg8cLvdAIKVcrK9lTCc9wQPrW2fPXsWALB//34oldE/HrEruNPpRFdXFxQKBdrb20EIwfj4OOsum5qaCkpS6XQ6URn6zYhQaey7774LjUaD2dlZ2Gw2Jo3Ny8tj0li3283ILdtbRcd5TXBqpXTy5Ens3LkT/f39qKioQFlZmaDniyG4wWDA0NAQampqMD09HaQm02q17ALnJ6lGR0eRlpaGvLw85OfnIzs7e8vruzmOQ2lpKbZt2wbgA2ns1NTUGmlsOC28bH4RjPOW4Pzatt1uR39/v+B2UwohBA8EAhgcHITdbse+fftACMH09HTQMfgITVJ5PB5m9jAwMMBWtPz8fGRmZm7JFYv/noRIY/laeJnwwTjvCM5PpHm9XvT29iIQCGD37t3IyMgQdaxYe3AakhcWFqK+vp55sInJoqvV6qAQll7gExMTWFlZYcqw/Px80ee/2RBJGms2mzE+Pg673b5GKccnPI2YMjMzzxvCn1cE59e2zWYzzp49i9ra2qAVVQyikXNxcRGDg4NobGxEXl7emvMQcoxwoCvatm3bWJKOKsNcLhcTitDmkq0MStbMzExs37496PMIJ431eDyYm5tDXV0dgPPD3uq8IThftz02Ngaz2Yw9e/YgPT0ds7OzcZWqwpGT1s5tNlvE2nmyymKhUlC+UMRgMGBhYYENVtDpdDGThpsdsaSxDocDHMfBYDAwaexWd7vZ2t84gkNyl8uFnp4e5OfnY9++fewLjKdhBVgbortcLnR1dUGv18e0aor0cyLgC0U4joNarYZGo2EhLO0qy8/PR05OzpbP0IdKY41GI+bn5+HxeJg0NicnhznWKhQKuFwuFspvBWnsliY4v7a9uLiI4eFhNDQ0ID8/P+hx8dSzgWByLi0tYWBgIOzxIz0n3M/JhEKhQH5+Pjsf2lVGPwulUhmUod+MF7AYBAIBZGRkoKKiQrA0drObX2xJgodaKdH9abiQGYif4AqFgh3fYrEEuadGwnq2poZ2lVE7Zr47a35+PvLy8qDVajfFBSwGgUAgaJ8tRBrLV8ptRsJvOYLzxwQ5HA50d3dj27ZtaGhoiPgFxEtwSu6SkhLs3btX0BdMCU5fM97tQTLAt2Pml6BGR0fhcDiQlZXFCJ+eng5gc7fVxpL2hpPGUsKHk8aGut3QsD49PX3DEH5LEZxf256bm8Pk5CSam5uZbDES4iG40WjE7OwsysvLUVNTI/pcKVE2itgkXAmKJqjOnj0btF+V6nyl/hxCV/BYSEtLC9rixJLGOhwOzMzMoL6+Hvfffz/uvvtuVFdXS/V2BGFLEJy/+uTm5qKvrw8KhUJQuykgTvZJCMHw8DAsFgvKy8uRmZkp6lw3wl1dCMJ5t1mtVhiNRjidTpw8eRK5ubnIz89Hbm5uUjL0QgdBxItAIJDQecaSxvr9figUCpw+fRpDQ0Oik5gcx/0SwNUADISQ5jB/5wD8AMBVABwAbiGEvB/tmJue4LS2bbfbMT4+Do/Hg8rKStbqKARCw2S3242uri7odDrs3buX3cUTwUZZwWNBoVCw2WgWiwVtbW1YXl5mFzf9O83Qx1NTplsXqeD3+8PmYOJFaNfhwsICDAYDnn32WZw+fRo33ngjLrvsMvzDP/wDsrOzhRzySQCPAngqwt+vBFB77t8BAD8599/I5yjsrWxMhIbky8vLOHjwILRarajjCAnRjUYjzp49y2aMAYmTM97JJusJes5KpTJoNaMyUKoKU6vVbP+elZUlaGWmOQmpINZeSyxo1PPtb38bx48fx29+8xucOHEiZuKVghDyJ47jKqM85BCAp8jqBfMOx3E6juNKCSFzkZ6wKQnOr217PB709vZCo9EgNzdXNLmB6AQnhGB0dBRGo5E1xlAkK0G2mQgeCaEyUJfLtaZnnBI+IyMjLJGlXsHF7sHFwu/3sxuIx+NBWVkZPvGJTyTzJcoATPF+nj73u61DcH5t22QyYWBgAHV1dcjNzUVnZ2dcx4xEcI/Hg66uLuTk5GDv3r1rLg5aJosHVquVOZlsJgjdJ6enp6O0tJSJRGjP+PDwMFwuV1CGnq5wqVjBU0Vwid5HuINGXR02DcH5te1AIIDR0VEsLy+zVdXv98e9moYjqslkQn9/P+rq6ljdOBTxhNeEELjdbgwODiI9PR0Wi4WpnqhgZCMn4uJJhIXrGbfZbDCZTOjr64PP50Nubi4yMzMljWZSQXCVSgVCiFTvYxpAOe/n7QBmoz1hUxA8tN20u7sbBQUFQbXnRFZThULBxBk0JF9aWloTkod7npgv0uv1oqenB4QQdHR0MENHs9kMAGx1y87OZqtbMpNCyUKiNyCO49iwhcrKSvj9flitViwsLMBqteLkyZOsHp2bm5u0fXMqV3BAklX8JQB3cRz3a6wm15aj7b+BTUBwfki+sLCA0dHRsAqtRD5Mupf2eDzo7u5GVlYWs0YW8jwhsNls6O7uRlVVFZxOJ9sWUEXT9u3bsX37dtY+aTKZMDMzg0AgwLLTybzY44UUKxM1tVCpVAgEAqirqwsyaqQttdS3LV6S0jKWVKAEDyW6UHAc918APgSggOO4aQD/BkAFAISQnwI4htUS2TBWy2R/F+uYG5bgoSE5FQdEm9wZLxQKBex2O9577z3U1tayRFEsCA3RZ2dnMT4+zgwlxsbGIh6D3z5ZVVXFaq30YlepVKx/XGh2OpmQslZNk2zhTC9MJhOzcaKuLtTGSej5SJ1Fp8R2OBxxJXsJIZ+J8XcC4EtijrkhCc7XbdvtdvT09LAVLtkXFyEEBoMBRqMRBw4cEGWaEKu8FggEWBdYaNMN/31Eu0mEXuyh2Wk6GTQ/Pz/qdiJZkJLgkZJsarWatdQCq6YXJpOJmTzQz4Bm6KMdPxUr+PLysugGKKmw4QjOr23PzMxgenoaLS0tQhsFRIGG5AqFAsXFxaIdUaKt4NTNpbi4OGofvFiyhGanQ9tJaevkevW3JwKhZbKMjAyUlZWxllq73Q6TyYTBwUG43e6IOYxUEZzedDYCNgzBabvp/Pw8CgsL0dfXB6VSiQMHDkgSVlksFvT29qK2thYqlQpzc1FzFWERieBUOhouVyD0GEJfn99OSsURZrMZ8/Pz7GJLpLssFOuxgkcD3+SBttTycxh+v5/d9FK1B5cJHgIaknu9XkxMTGB8fBzV1dUsJBN7rGgXCSEEExMTWFhYwO7du6HVamGxWOIiWWiITjPwJpNJkHSU/7xkgC+OoN7hKpWKdZclQw4q9R480WOH5jCoQMRsNsPhcOD9998PytAnk/CU4LSxZyNg3QlOzQ+p26jD4cCFF14Y1wfEtyIOB6/Xi+7ubmRkZARlyZNh+OD1etHV1YWsrCzs2bNH8IUjZZJMqVSy7jIaIVE7ZqfTyfzb8vPzN0Q5TooQmi8QMZvNaG1tZZZWQ0NDUKlU7KaXqOkF3WLIKzjWtpv29PQgOzsbGRkZcd/90tLSIl4ky8vL6OnpQU1NDXMopUiU4FarFT09Paiurl5zbKHHkBp8OWhoOa6np0dwOW6jr+CxoFKp1kxWMZlMmJ6ehs1mYzbMiUQ5drtdkpxRPFgXgvNr20ajEYODg0zEYTQa4z4ubXbhZ6tpSD4/P89C8nDPi9fRZWVlBb29vWhraxOVOV1vPXikcpzRaGS1Zxru88txUu/BU+1sqtFogpKW/CjH4XCwKIdvehELDofj/Myih9a2R0ZGYLPZRO1Xo4Gu4BS0c0yj0WD//v0RL554CO73+zE8PAy3242//uu/TigRuBHEJqHlOLqyTU1NwWazITMzE/n5+VCpVJt6BY+G0CiHVilMJhOrUlBHl2hz5FZWVmKajKQKKSM430rJ6XSiu7sbxcXFEd1H4wG/XXV5eRm9vb3YuXNnzGSd2JZTh8OBrq4uRoY4hP1BK/hGROjKRktRs7OzzKaI2jEnq/FISjVZvLbYtEpBTRpplSJ0jhx/SKXdbhc8/kpqpITgtLZNCMH8/DzGx8fR2NgInU6X1NehBJ+cnMTMzIzgsFlMyylNzjQ3N0OtVqO/v1/0eYYSfCOs4NHAL0Xl5uZibm4ORUVFMJlMmJycBACWrEukHCdliJ4MpRrfsw1YO0fO4XDgpZdewvT0NFpbW0Udm+O4K7Dq1pIG4HFCyEMhf88F8DSAHVjl7XcJIU/EOq6kBOcn0vx+P86ePYtAIBDTSineUI3jOAwMDCAzMxP79+8XvLIKCdGpVdPy8jJzZ6Ue2vGcZ+ixNwvoKsu/0L1eL6u9Dw4OQqPRsP27mESV1Pv7ZPdT8Lc11JdgZWUFPT09+MMf/oDHH38c3/ve97Br166ox+E4Lg3AYwAuw6pi7D2O414ihPTxHvYlAH2EkGs4jisEMMBx3K8IIZ6o55jYW4wMfrspfdM7duxAWVlZ1C+R7qPFfhlWqxUGgwHl5eWora0V9dxYBKe68Nzc3KAtRbyr72YI0SMhHAlDM9PhElWU8NHKcVKv4FI3uSiVSnzsYx/Da6+9hjvuuAMlJSVRPfJ52A9gmBAyCgDn1GKHAPAJTgBkn/NlywJgAhBzPpUkBOcn0qanpzE7Oyt4cicNs4USnBCCqakpzMzMoKioKK6wPxrJaMdbOF14vNl3AJiZmYHNZkNWVlbcMteNitBWUlqO6+3thc/nY+W40PnnmzlDz79mqUagoqJC6NPDObWEeq09ilW56CyAbACfJoTEvPiSSnD6ZdIVqq+vj2WwhRKWyu2EwOfzobe3F2lpadi/fz/GxsaS1oNNbxyzs7MRy2vxrOB+vx92ux1qtRqlpaVYXFyExWLBqVOnkrKPlRpiSRhO+83ft/Knq0jZSppKgtOoRQSEOLVcDuAMgEsBVAN4g+O4PxNCrNEOnDSC05B8dHSUDfQL11QSC0IJTvXVfAfV0DJZvPD5fMx6ed++fRFvTmIJ7nQ60dnZCZVKhbq6OigUCqSnp8PtdmPXrl1B+9iMjAwW1m6kscCJrrKh1sP86SpGoxEWiwVutzvp7zuVBKdjjEVAiFPL3wF46JxkdJjjuDEAuwC8G+3ASSM4vdhtNhszKIznC4pFcEIIZmZmMDU1tSbsT8TVhcJut6Orqwvl5eXYvn171MeKCdGpK2tjYyNGR0fZ7+nnxt/HUg8zvkKKH9ZupSmh/OkqQ0NDyMzMhN/vZ+87JyeHtZImUo5LlRYcQDytqu8BqOU4rgrADIAbAHw25DGTAD4M4M8cxxUDqAcwihhI6pXS1dUFjuNQVVUV9903GsHpyspxXNiwP5E9MbDqaz0yMiJoGgogLEHGF7dQC6hYZTK+hxkdC0zD2vHxcTZUUK/Xp9z0QepWVa1WC51Ox9631WplDTcAgtppxazIqVKS0f8X09tPCPFxHHcXgNexWib7JSGkl+O428/9/acAvg3gSY7jurEa0n+NELIU69hJJXhzczOT6MWLSKswDckrKioiNhGkpaXB44laNQiLQCAAl8uF6elp7Nu3L2mNG36/Hz09PVAqlUHiFrGhfeiUUNplxjd9oH9PRkdgNKTC0YWCDlOgiVOfzxckFNFoNGz/HsvZJZUhejyVFULIMaxaMvF/91Pe/88C+KjY4yaV4HTSotvtjvsYSqVyzSo8MzODiYmJmMYP8YTobrcbnZ2d4DgOHR0dSbt4HQ4HOjs7w4b6iTa6hHaZ0XZK6lCal5cHr9e7IRRiYhCrGUWpVAZNR6XjqvjOLpFudKkguFqt3nDlz6QSnDs3XTFZK7jf70dfXx8IIYLmjIkN0c1mM/r6+lBfX4/BwcG4zzkU1PChqakpbNmOX0dPtJMttJ2SdldNTEyw1S6eppNI2EhqsoyMDGRkZGDbtm1hb3S0jVSn06XcUXWjIOnZGqVSySyI4wG9QaysrKC7uxvl5eUxm2P4zxVC8HD74qGhoYQvXkIIxsbGsLS0FFVAE0rqZHay0e4qu92O9PR05OTkrNGA6/X6uJNWG7VWHXqjo+42NG/h9Xqh1WqRm5uLnJycpL8HSnCfz7ehkqBJP5NEV/C0tDQsLS1hampKtBebkBDd5/Ohp6cHarU6rOlDvBcYPa5Gowk7BYWPVHay8ZtOqAbcaDSypFVeXh70er1gO+KNtIJHQ+jo37GxMbjdbszOzmJgYICVIaONUhIDvl3TRnFzASRaweMluN/vx8zMDLxeLw4cOCD6ThgrRF9ZWUFXV1fY6aOJZOBpaa2iokLQVNP1EpvwNeDABz3k1I54vWvvUqrJaP98cXExK0PyRyklWo6jBLdYLBvGzQWQaA8eT4hOSULdROIJc6KF6HNzcxgbG4sYFcRLcK/XizNnzqC5uTlIMhgLhDfeZr3EJvHU3jea6aKYY/OrGPxRSnx3m+npaQQCASam0el0gm46G9FwEdggITolX3NzM3w+HxYWFuJ67XAhOh2a4HK5oibqxBKcGix6PB4cPHhQVMY6lnfceiC09s7fw46NjTGHFzp/SwpIuYJH236Fc7cxm81BwyZoZBOpHMcn+EZxcwHWOclGJaRer5eRb3l5OaEhgvznulwudHZ2oqioCLt27YpKKDGacJ/Ph66uLmRmZkKr1YouR/HPY6PqwUP3sLT2PjMzA5fLBavVypptklWOS9UKHguh5TiXywWTyYSJiYmIfQd8R9UtS3CO4wS7o9CQvKysDOXl5eyLTaTdlB+i09bQhoYGQZI9oedN9/FVVVUoLS2F0WiMS4AhVRZdKtDaeyAQACEEubm5MBqNawwbhYa04bBR9eDp6enYtm1bUDnObDajv78fXq8Xubm5QZN4xIboscwezj3mQwD+A6uzypYIIZcIOfa65PPn5+cxOjqKpqamNfvWRLLwdEqo0Omgoc+NtYLTVlb+Pj6ecHuz68EVCgUrSVVWVgbNTxseHt6Qhg/JalXll+P4wyYMBgN+8Ytf4IknnsC2bdtw/PhxQb0b5671qGYPHMfpAPwYwBWEkEmO44QNz0OKCU5ndbnd7ogtoYkQnEoxPR5PzFJVKKIRnO/msnfv3qCQNJ4Qm+M4JpvMzc3dVCQP915DDRtD/dfFZKg3QoguBnQro9FocPvtt4MQgt7eXjzxxBOYmprCpz/96ajPf/fdd4HYZg+fBfBbQsgkABBCDELPL+kheiRQo8LS0tKos7riJTj1JlepVDEtcsIhEsHpQIPs7OywBpHxENzn82FgYAA5OTkYGhqC0+nE9PQ09Hr9hpKGRkIsEobW3kMFI3R1T2QUsFikypKZEIKLLroIt912m6DHz8zMALHNHuoAqDiO+wNWzR5+QAh5SsjxJVnBacKKfqALCwsYHh4WVEqKh+AzMzOYnJxEa2srurq6EjpnPqjAJZozq9jsu9FoxMLCAqqqqrBt2zZwHId33nkHAILKU3q9fo3jyUaA2DA6VDDi9XqZO6vVaoVWq2XJOikhJcH5N3i73S7GySXS4hD6SyWAPViVi2YAeJvjuHcIITH7qyUhOJ+kAwMDcDqdgud6i7l4/H4/+vv74ff7sW/fvoRaBEOTbDRPEMtqSugKTh1i5ubmUFpaGtTtlJaWxsYj0z2d0WjE6OgoVCoV9Hp90nrJE0Wi+2SVSoXi4uKghhPqO2632zE4OMjC+WTe3KSUi/I/E4fDISrJdk6IFMvsYRqriTU7ADvHcX8C0AYgtQSnb1KpVGJlZQWDg4MoLi6OWaKKB/yQf8eOHUmxxKUZ4sHBQdjtdkHSUSEEDwQC6OvrQyAQwN69ezE2NhYxix5annK5XIzsTqcTubm5jADr0fOczIx/aO393XffRUFBwZrae+h0lXgg5QqeiJvLvn37gNhmDy8CeJTjOCUANVZD+O8LOb4kVwidKNLS0pJ073MAWFxcxODgYES1VjxQKBTweDw4deoUdDoddu/eLeiCihWiUzlqUVERKioqRCvI0tPTg/azdHUfHx+HUqlkq3ssPXQyIdXrcOeGKUTSvQt1Z42EVBFczAp+7iYd1eyBENLPcdxrALoABLBaSusRdHwxbyQWCCEsJG9ubk46uQkhGBkZgdlsZt7kkR4n9iL0eDyYm5tDY2Mjs/8VgmhktVqt6O7uZnPXIj1H6LmG+pG73W5GdrvdjpycHEZ4qZDKDrxQ3Xu4YYl6vT7pY4DFIkG7pphmD+d+fgTAI2LPLekreH5+flI6kkIvJOpNnpOTg71790Y8fjx16dnZWczNzaGsrEwUufmvFwraftve3r4mZEtWo4tGo2ENGPxs9eTkJDweD3JycqDVapNq67ReLbZciDtrOHcXmqxLhjpMDBIluJRI+h68qKgIFoslYdMHfucRHf1bW1sbk4DRRgiHgt+nXlVVFRfRQkN0QgiGhoawsrISsdFBiouPn63euXMnRkZG4PP5gsJburpL1UueCMR+9uHcXUwmU9LUYWIQSvCNMjoYkGAF5zguaaYPCoUC09PTmJ6ejuhNHopwI4TDwePxoLOzE/n5+di1axfm5ubisprir8Y+nw+dnZ3Izs6OuYePJ0QXA6VSiaysLJatpjrw6elpAGCrndih91Kt4IkeN1bt3e12Y3l5WVKzB2BjjQ4GUlAmi/f5Xq8XZ8+ejeigGu25serSNCLgTytJZEY47UHu7OxkPeqxnpPKXnR+eFtVVcVq0XTofVZWFlvdYyWvpCR4svbRobV3j8eDkydPYnZ2FmfPnoVWq2XvV2grczTwCR4IBLa2owuwunrE425KEQgEcObMGezYsQPl5eWxn8BDLLHK9PQ0pqam1kQE8RKc4zhYLBbMzs6K0oSvp8AktBa9srISJBzhr+6p7DSTat+sVCqhVqvR0NAAQj4YhUyVjLm5uQk1FlGC8zX+GwWShOjxmj4Aq+N5l5eX0dDQIMgdJRSRiEr74D0eT9immHgITghhoWA0D7ZQhHbNrWfzCl88QZNX/E6zzMxMRniNRrMpVvBQhJo90FHIfLEI7TWIp/YeuiVc72YkPjZMiB4IBDA8PAybzYaioqKEBieEEpXWogsLCyP2wYsluN/vZ8P0ampqRPmRb2S5qFKpDHJ5sdvtMBqNzKkUWK3NJ7s0tV5a8Ei694mJCZYwi1V79/v9kvvRxwvJQnQxK7jb7UZXVxfy8vLQ0dGBwcHBhCSj/OfS6aC7du2K2u8spvmEGkmUlJSwSSVisFFNHkLBX+2oJXNvby8sFgvm5uaYh5ter094L7tR3Fpj1d7poAX+DY6G6B6PZ8N50UsWogslKPUm5ye8EtWE05V4ampKcAZe6ApOE3T0hjE8PByXXDTazxsVSqUS6enpKCkpQU5OTlAfudfrDRLJiF3dU9VKKgZCau96vR4ulwscx8XlqPraa6/hyiuvHEAUs4dz57IPwDtYHRt8ROjxJVvBYxGUEILJyUnMzc2ho6MjKCRPhOB0/0/vuEIz8EIIPjs7i4mJiaAbRrx6cEII3G4329duFtCVNpyHW6jpA50iKmS7tVFW8GgIrb3TG5zFYsH09DSeeuop+Hw+LC8vC0q2+v1+fOlLXwKAKxHB7AEAOI5LA/AwVttZxZ2z2CcIQawkGyWgSqXC/v3713z4iYwB9vv9GBoaQkVFhSgRSizDB9qCG5qgizf7bjAYMDc3h0AgALfbzSaQbKQSSzhEImLoWOBwDq3RMtXrZbiYCLRaLbRaLSwWCxobG7GwsICf/exnuPLKK/GRj3wE3/rWt6I+/91330VNTQ1GRkaimT0AwN0AjgLYJ/YcJWt0ibQCU0+zaEME4/VlM5vNmJmZwbZt20RpculrRjJ86OzshE6nQ3t7e8KGD16vlymlWlpaAAAnT56E1WrFxMQEc0dZj5bLZIJe/EIlsBvFcDHe42u1WjQ1NWHv3r345S9/Kej6nZmZCS0DrzF74DiuDMB1AC7FRiA4ENmhlGqsY00sETsllB/uV1ZWxrXfCme6SG9G0QwfIr3XcHA4HDhz5gzy8/PhdrtZmE4IwY4dO1BRUcGaUGjL5UYzf4gnlA7NVNO20pGREbhcLuTm5kqahU7FXDKFQsEcVwEI+q4Emj38B1ZHBfvjuQFKRnA+aM83DXFj9QaL2YPTAYXAqrZ2YWEh7pZTPlGpJLW1tTXmRFMhK7jJZEJ/fz8aGhqQkZGBiYkJnD59Gi6XC9u2bYPX64VGo2HDCIqLiwGAeZOPjIyI3tdKgWTslUPbSpeXlzEzMwOLxQKHw5F0CWyqBg/yCS4E27dvZ6209FdYa/awF8Cvz30OBQCu4jjORwh5QchrSL7hc7lc6OrqQkFBgWDjB6EEdzqd6OzsxLZt25j1cqItp+TcAEGj0RhVkkohZAWn/fTt7e1Qq9XgOA5arRYqlQrNzc2wWq0YGxtjhg56vZ71TNNheZWVlXC73TCbzRgYGIDX62VzxdZbLpkIqAQ2EAggIyMD27dvjyiBjTc/IfXkT5o/EOvmsm/fPgwNDSGa2QMhpIr+P8dxTwL4nVByAxLtwSnoqhWrBh0KIQSnvueNjY1MH02fGy/B/X4/urq6oFKpsGfPHkGkUSgU8Hq9Yf/GT87xZ48PDQ3B5XKho6MDaWlpyMnJYSN06ESN0dFRtmJTBZhGo0FJSQlKSkpACIHFYmElm4yMDLa6SxnuSpXtpqtsNAmsQqFgdXcxEthUGS6KdXNRKpV49NFH8bGPfSyi2UOi5yTJCk73lkNDQ6K8ySmiEZyEGf3LR7wJOrfbDbvdjvLyclH975GSbHT6SXZ2NlpaWkAIYd1v9HehF6hCoViTiV5aWsLg4CBbsakbKYAg8weXywWz2Yze3l4mtdXpdEknZCrVZKESWI/HA6PRKFoCmyqCr6yssK2VUFx11VUghNTxfxeJ2ISQW8SeU9IJ7vP5cObMGQBAe3t7XKtJpFXY7/ejp6cHSqUyaPQvH/GE6LTZRqPRiBa3hCO4w+FAZ2cnKioqWMun2+1m885jqc0otFotduzYwXqmTSYTW7EzMzNZ8k2lUiE9PR2lpaVsdR8aGmJNGVQtptfrE9ZGS1WzF0JCtVq9pstMiAQ2VQovsSF6KiDJbLLy8nK2n40H4VZhSpry8nLqRBnxuWIITtVlHR0dOH36dFznyn89erNobGxEVlYWuxD7+vrQ0NAQt41VWloaa7KgCrClpSX09/cHKcC0Wi0jS2lpKQoKClhNmlpKU7LH6/SyEfTgYiSwqbRM3khacECiPXhhYSFmZmbiVpSFhuhLS0sYGBgQZLIodA/OV5eJ0ZuHgr+CU392fjJtYWEBExMTaG9vT1rmm68Aoxe30WjEzMwMbDYbAoEA1Go18vLyWEKPX5M2m80szBWbxNqoarJoElin0wmdTgeNRpN0w4eNbNcESJhFT7Td1O/3s4z20tKSYDmmkD04380l2pQVIaBZ9MHBQaysrARNPxkdHYXVasWePXskDRFVKhVKSkpQWFiIrq4uaDQaqNVq9Pb2Bu3rNRoN0tLSWCONQqFgYorJycmgbrRIHuxSJ9mSgVAJ7MDAANRqNTN8oNsb/nTQeCETPA7QsLezsxMajUbUnLFYITqdVlJTUyPaYDEcAoEAFhYWUFpaitbWVhBCEAgE0N/fD7VaHbb7TQpQRV5ZWVmQjt7tdmNpaQljY2NwOBwsUZeTkwMAQdpoqgXne7Dr9fqgIQRS7cGlNnOkCrBQCazf7w+rEBOKULum84bgifiy2e122O12Nt5HDKKF6HQ6aKxpJULhdDoxODgIrVaLnTt3ghACj8eD7u5ulJaWRs0VJBN2ux3d3d2oq6tbY5ms0WiCmkqoIIRfhsvLy4NGownSggOrts9msxljY2NQq9XQ6/Xw+/0bfgWPduxwEli+QkysBJZPcLGNLqmAZJ1s8a7g/A86XkeX0NelfuoWi0VQJ50QUJ15RUUFpqenYTaboVQq0dvbi/r6ekm9yfmgjS/Nzc0xLy5aR6bnRstwQ0ND8Hg8rHGGluH4UknaZONwOHD69Gn22ETmgfOxXmoyvkIsdJSSEAnsRnZUBTbQCh461ODkyZNxvW5oiO7z+dDd3Y2MjAx0dHTEvBiFXGhUNtrW1ga1Wg2lUonx8XGYzWbo9Xp4PB54vV7J7Xrn5uaYv1w8e8lwZbjFxUUMDQ0xY0JahlOr1SguLsb8/DyamppYFn94eDgpTTapWsGjIZwEljYeDQ8PIz09Pch7HQgmuNPpFK0HlxqS7sEjdXiFgjaFaLVawR1kkcAnJy2t7dixI6JyjY9QP/ZQkHNzwq1Wa9DNwul0srGxLpcLi4uLrPOqsLAQBQUFSS2fEEIwPj4Oi8WCjo6OpCTwQstwdrsdS0tLOHv2LHMy8Xg8UKlUrImGVjSozRF/T0vbbYV+l1Ku4PG2qtKEJJ1KE04Cyz8uIUT068QyfOA47kYAXzv34wqAOwghnUKPL1mIrlQq4XK5Yj6WKrZC7YZpdjpestM2WTHzy6IRnLaxZmRkoK2tjTloDgwMAAB2794NhUIBtVqNnJwcVFdXw+12sxXR5XIhLy8PhYWFCYW1tLwHAG1tbZKsevx9amVlJcsruFwuKBQKjIyMsB54pVLJbI74LbTz8/MYGBhgGWu9Xh+1r38z6MHDSWAnJydht9vxL//yL/D7/RgYGEB9fb1gs0YBhg9jAC4hhJg5jrsSwM+xdn54REi6gscK0WnSK5x8lD/8QCw8Hg8GBwdFt8lGysC7XC6cOXMG27dvZxcxDf0LCgoiGktoNJqgscA0mUMvfLo6CPXxoq+p0+lQWVmZkuw8HdFM20WB1eTb0tISpqamWBmOeowTQthEEY7jmDS0p6eH/S1St9lm0oNTCazD4UBhYSG++c1v4sYbb8R9990HQgheeOGFmMcQYvhACDnOe8o7WFWcCca6lMloqLu8vIy9e/eGvcDp88XsY2l5is4LFxsuhSM49WBraGhAdnY2CCFwOp3o7u5GdXU1s++JBX64x+9E6+xcjbYKCgpQWFgYUSJJVXk7duyIqE1PNrxeL7q6ulBcXBxUEcjNzUVubi6LUoxGI3MhpUkp2lDCl4ZSWyfabZadnY2CggLk5+dLuoJLncBTq9WoqalBRkYGnn/+ecGlRCGGDyH4PIBXxZyfpCF6uBWcXjTZ2dlBTSGhEJuF51sjp6enJ8X0YX5+HmNjY2hra4NGowHHcTCZTBgaGkJTU1PcGdPQTjSPx8NKV3a7HXl5eSgoKGD155WVFfT09KC+vj5IOScl6OdZWVkZtV8gVP3FL8PR0ho/PKc/cxyHlZUV1mRDjQsVCoUko5ClIrjP50NGRkaQo6rQ1xJo+ECP+TdYJfhfizm/lK7gtMkkmkMK//lCe8rpmF7qzDo3NxfXXZvu+2lGf3l5mSXTOI7DzMwM5ubm4s5aR4JarV5DksXFRQwPD0OhUMDlcqGlpSVl5KZ1dbE3lNAynNPpZGU4t9u9pgzHz1j39/dDpVJhfHwcDocjbJPNRgTN2aysrIhOpAo0fADHca0AHgdwJSHEKOY1JC2T8QlO7ZqENpkIXcHpcfljeulKLJbgVNtNO+ja2trYTWZwcBAej4dpuKUCnyQzMzOYmppCWVkZRkZGEAgEoNfrUVhYKHpooFAsLy+jr68Pzc3NCdd0MzIymPyWX3Lil+Go2YPT6UR1dTVbBWkL7djYGPNwoy20Gwk0Q2+1WkU3uQgxfOA4bgeA3wL4W0LIoNjzk7TRxefzgRCCwcFB2O12UU0msXrK+SWr0OPS54rd0xFC0NfXh/Lycmzbto21nfb09CA3Nxd1dXUpSWwRQjA6OgqbzRaUS6CikomJCaysrCA3N5f1lSfjpmM0GjE0NJRUYQxFaA6CluF6e3ths9lQWFgIn8+H9PR0BAKBoF5yj8cDs9m8xqcuLy9v3Z1sKMHjaVMVaPjwrwD0AH587trzEUL2Cn4NUWckAgqFAj6fD6dOnYJOp4s5TjcU0VZwWjfPysoKckrhP1esJtxqtWJxcRHV1dWM3LS/u6KiImWJLZooTEtLQ1tbW9B7o6KSkpIS5mVG+8zVajUjUDzknJubw/T0NDo6OiSfzkHLcBzHYX5+Hm1tbfD7/Zibm4PVamXjgnQ6HZRKJfOpKywsBMdxQT516enpbHVPxqRQsaAEj2foARDb8IEQchuA2+I9P8kIbrPZ4HA4UFdXF5eoIxLBqTNpZWVlxFZWsa4utFxXWFiIQCCAQCAAm82G/v5+NDY2Cp4Ymii8Xi+6u7uh1+tjerpTLzO6R6Ztp/39/fB6vdDr9SgoKEBubm7MG+vExASMRiN2796dMl92m82Gnp6eoK0Af5Y5Xd0BBBGYEMKy+FVVVczJhraWhvrUST1UIl7DxVRBkm/Tbrejp6cHGRkZcSu2whGc6sJjjekVavpAQ2Gz2YyOjg643W5MTU3h+PHj8Pv92LlzZ8r2fHTeWWVlpWjbHyC47ZSqwmZmZtDf34/s7GwUFhZCr9cHEZhuc9xuN9rb21MW7i4vL6O/vx+tra1rElN8Iwdq07S0tMTKcHxTSurhVlJSwj4zvk+dVquVPDHJX8HPG4JnZmbiwIEDOHHiRNzH4BOc78MmRBcuhODUH02pVKKtrQ0AmNNpVlYWqqqqYDKZcPr0adbGWVBQIAnh6WqWiOMLH6ETQun2Y2Jigr2X/Px8jI+PQ61Wo6mpKWUDFmirZ1tbm6CtRGiFgW5LxsfHoVKpgkYb05ZanU4HjuNY27DT6cTJkyfZY5Np+kCbaM4rgtMkGxB/kwHtZQ8EAujt7QXHcRF92MI9N1qI7na7cebMGZSUlKCsrIwl0/r6+pCens403LR7y+VysejB4/EgPz8fhYWFgsLfWKBChra2NkluHtR6mUY8LpcLBoMBJ0+ehEKhQElJCcxmc9JUYdFgMBgwPj4ed5kxdFvidDphNBpZFBJahktPT0dhYSGsVisaGhpgNpuZ6YNQw0YhoDX9jWbXBEjsi06JFs++Li0tDW63G++99x5KSkqSNmfMZrOhq6sL9fX1zHXU4/Ews4RwopT09HTWchoa/ubk5LDwV2wme3p6mg1fTNXYWYVCgYWFBdTV1aG4uBgmk4n1jWdlZbFEXbKVcDSJt3v37qQdm/qo81uBaRkuIyMDeXl5mJ+fx/bt24Msl7lzk0CphxvHcXHZMfNht9sFCZpSDUknm9ButngI7nQ6MTs7i7a2NlGe6kBkghsMBgwPD6OlpYWFhysrK6I03KHh7/LyMhYXF5mBAlVkRVuhaCON3W6XvK7OBx0UUVNTwxRSoUaOi4uLOH36NBQKBSN7op1lU1NTWFxclDSJF1qGs1qt6OrqglKpxPT0NJuYQo0wtVotu0HQFloqHKE+dXl5eYLP1+l0nl8reCKmD7Ozs5icnGQ1XrEILZNReeXS0hIjFMdxjJjxhsc0jNfpdKitrWW13e7ubgQCAdZfzl8V6JZDo9GgtbU1ZXvflZUVdHd3R6wK8Ntnd+7cyayeRkZGmNVTYWGh6Nrz2NgYlpeX0dbWlrIbmc/nw+DgIOrr61FUVMSiLlqGo46rVBDD96LjOI412dCcRSSfOqooBDammwsgcYgej+nD4OAgHA4Hmpubmd+1WPDLZJRQCoUC7e3t7DHUoGHPnj1JCxlp6yUdIkhr1LS/PD8/H5OTkygqKsKOHTuS8ppCQF1fwmWtIyHU6slsNrN5bVqtliUdI20t+Bn61tbWlGXoPR4Pzpw5g6qqKiYECo26aBmup6cHwAd+6tRymm/p5PV6YTabmU8d3+EF+GDI4HmVZKMQs4JTEUpOTg7a29vhcDgSNm2kX3ZRURHbHxFCcPbsWUZ4qS48lUrFTPoDgQDm5+fR19eHtLQ0WCwWqFQqSfa6oTAYDBgbG0N7e3vcjSB8Z1Z+F1pXV1fYSIXq5AkhKc3QezwenD59GtXV1WwLEopwZTij0YipqSnWHcg3YKSWTgUFBeA4jo1SGh0dhVKpZF128RD8tddew1e+8hUMDg4OI7zZAwfgBwCuAuAAcAsh5H0xr8HFaASIu0vA6/ViYGAAOp0upqQy3Jhel8uF3t5e7NmzR/Rr0z3X4uIi6urqkJeXB0IIayQpKipiwwpTAdrf3djYiJycHLbXXVpaYnvHwsLCpGfRp6enWaeYVDcSSpDFxUVWp3Y4HMjOzk5Zay/wQWWkpqYmrm0dADYLbWlpCUajEUqlMkgNx+cKJfvw8DCeeeYZvP7667jiiivw2c9+FhdffHHMvbvf70ddXR3eeOMNVFdXawC8B+AzfLMHjuOuAnA3Vgl+AMAPCCGCzR6AFKzgsUL0SGN64x0iCKzeMObm5rB37162ajkcDvT09AQlmFKBxcVFjIyMBPV38/e6/BKc2+1mYpJESnDUT95ms2H37t2S7n3544R8Ph+bDmM2m3HmzBm2+knZRkoNOcK5yooBfxZaTU0N+27oHHMantPr1Ov1IjMzE4888giGhobwoQ99CM8//zwOHjwYk+DU7OGcG68nnNnDuZ+fIqt3lnc4jtNxHFdKCJkT+p7WLUTnJ77CjemNJ0FHG2KWlpZQWlqK9PT0IA23EOfRZGJqaooNSYy0gvJLcH6/n00oibcER8PjQCCQ0iQetbQqKSlhJgZ8QYnP52M3r2Q2mlByS6GV5383/MmvIyMjSEtLg9PpRFlZGUZHR9HX14ePfOQjuOmmmwQdW6DZQxmAqZDHlAHYGARXKpVhjRfpEMFoY3qpNlsoaKMKIQS7du1CX18f24tTc8JU1Zrp8D+32y3IyZUiLS0tZgku2mpIlW+ZmZnYuXNnysjt9XqZpRXfVy806WgymTA1NQWbzcZuXonM/aZlv127diWlAzAa+HkIq9WKnp4elJaW4o477sDZs2dxzTXXYHR0VLAoSaDZQ7gvUNS2WfIyWajxIr3jlpWVRZ3kKebipKOICgoKUF5eDkII9uzZg97eXjgcDiiVSoyNjaGoqIi1MUoF2gKbkZGB5ubmuF8rtARHcwq9vb3w+/1rEls+nw+dnZ0sv5AqhMtah0Po7DC+Eo4mHAsLCwUr4Si5GxoaUiYGAlYbpXp7e9He3o7FxUXYbDb89re/hdlsxsmTJ3HhhRcKOo5As4dpAOUxHhMVKQ3R6eTNhoaGpA0GoAm6mpoa5u3l9/vR19eH/Px8dHR0IBAIsDro2bNnE+o+iwbaEVdSUpL0qSZarRYVFRVhS3A5OTlYXl5e40wrNeLd+/JvXjU1Ncz5pb+/Hx6PJ0gJFy76oXbYTU1NbARTKkCts9ra2mAymfCZz3wGP/vZz3DBBReIPhY1exgbG8POnTvVCGP2AOAlAHed258fALAsZv8NpLAOzh/TmywzAZqcop1phBC4XC50d3cHqbJCPb/5oW96ejqKiopEuZuGg8PhYDcaqZN4/BLcysoKzpw5g6ysLIyPj2NxcZGF8lKW4KitUzJW0FDnF6PRyG7G1JiRzja32+3o6upKiuOMGNBGodbWViwvL+OGG27AD3/4w7jIDXxg9nD55ZcDQD/Cmz0cw2oGfRirZbK/E/s6kpXJaG8wDcHcbjdaWlpErZjHjx8PG/IQQjA5OYn5+Xm0trZCqVSC4zhYLBacPXtW1J3dbrfDYDBgaWmJjT4WW7KyWCzMgz2VK4rVakVvby+72PntpktLS2zwQrJLcOG03FKANqUsLi7CaDSyG3hjY6NgN9tkgN5UWlpaYLfb8clPfhKPPPIILr300mS9hGR7RkkJbjQacerUKVRUVMSV9Hn77bdx4MCBoDCNb43c0NAAYDXko2KG1tbWuEsydFCBwWBgpglFRUVR/c9oI0lra2vSbY6igdorRZNd0vezuLiYtBIcvYm2tLSktPeaioRKSkpgs9mSNkgiFuh2oLm5GW63Gx//+Mfx7//+73TlTRY2H8EtFgtOnToFjuPwV3/1V3Ed48SJE0GztWm2ljqe0HOn/dLNzc1J21P7fD4YjUYYDAasrKyE7cWmJbnW1lbJO9L4mJ+fx+TkJNrb2wVvK+gNd3FxEVarNa48BNVyJ9IVFw9oxMBvtaUR4uLiIiwWS1yDJGKBJvIaGxvh8/nwiU98At/4xjdw9dVXJ+X4PGw+glutVrhcLpw9exYHDohqvmE4efIkWlpaoNFoYLfb0dnZierqatYySfvMtVotampqJDW3pxeT2WxGVlYWfD4f0tLS0NzcnFLjv8nJSXZTibe8xM9DGI1GQSU4quUWc1NJBqxWK/r6+tDa2hpxm8EfJLG0tAQAjOzxyj9pApFGiZ/4xCdw77334rrrrov/zUTG5iM47QV/++23BZcOQnH69GnU19fD6XSysJCGozRjvX379rjGDMcLn8+HM2fOsBuMWq0WJBFNFFS84XK50NTUlNSbCi3BLS0thS3B0e1Pe3t7SiMVau0k1P2Fgto8LS0thR0kEQuU3Lt27UJaWho++clP4u6778anPvWpRN5ONGxOgnu93oiJMiGgw/5MJhNaWlqgUqlYD3BfXx927dqVsmEAwAf19m3btjHxCiXH4uIiCCEoKChAUVFRUvenNO+gVCol7++mJTjaW0797ZOpuhMCutcXS+5Q8DvQTCYTMjIyWLQS7obsdrvZwqJWq3H99dfjtttuE9yhFic2H8GpU0q8BA8EAjh+/DgbQMBxHDiOY6FiS0tLSk3waVmotrY2opiBrhwGgwEulyspSS3aApqXl4eKioqUdacBwOjoKIxGI7Kystg+NxUlOCpvTfZenxASFK2EDpLwer04ffo0amtrkZ6ejk9/+tO46aab8Hd/J7o6JRbnF8HpdBGfz4edO3eyVXpiYgJms5mt5qkCteUVUxYKTWrl5uaiqKgI+fn5gsNrmlQsKytL6TaEr+VubGxk9sO0BGc0GuMuKcYCTeQlezxUONBBErQjzePxQKPRoLq6Gl/84hfx8Y9/HF/4whdScVOV7AVSYoItxniRJtOoVndoaIgZ52VkZKTU3hf4IGO9e/duUasJv6+cuoFSO18hKyG1Ud65c2dKa75UL89xXJCWO5zjy+LiYlJVcNRAMRXkBj4YJKHX6/H++++jsrISL730Em655Rbk5OSwGeBS97lLCclWcGB1PxNa6ooGk8mE/v5+NDc3s1XB6XTizJkzbAAgrU0nU5EUDlSZZjKZEspYhztuqB6cTu2gNxDaNZUsG2Wh4DvLVldXC/58I5XgxAhJ6ETSVGfpaVheVVUFnU6Hz33uc7joootw3XXX4dixY/jkJz+Ziqk2my9EB1YJfurUKTQ3N8e8I09PT7NGFZpMowMU6L6XXkgGgwE2mw15eXlMQJLMVT0QCDBHkl27dkkaMVDvboPBAL/fj6ysLJjN5jX6eKnh9/vR3d0NnU6HysrKuI/DF5IYjUZWZYhWgltcXGSuM6kkN9WvV1RUID8/H7feeiv27NmDr3/96wkvHrfeeit+97vfoaioiFlD8UEIwVe+8hUcO3YMIyMj3YjDrUUIJCU4tdCpra2NmFWm+mXagkiTaTRci9QxRbOjBoMBFosFOTk5bI+bSLMLTWrR0TipTGrNzc1hZGQEmZmZcLlcyM/PT4kCjs56KywsTLoSjY5UWlxchN/vZxEYLcEZDAZMTEykvARHy53l5eUoKCjAF7/4RdTV1eHf/u3fkvJZ/+lPf0JWVhZuvvnmsAQ/duwYfvSjH+HYsWNQKBQHEYdbixBIvgePNUSws7MTOTk5aG5uZvrvqakpGAyGqBruUJ8wuscdGRmBVqtlAhIxoTUdel9eXp5SVRYANnv8wIEDUKlUrFNLagVcJC13ssAfqUSTWuPj41hZWYFGo4HL5Up5Cc7v96OzsxNlZWUoKCjA3XffjcrKyqSRGwAuvvhijI+PR/z7iy++iJtvvpl62MXl1iIEkhM8dE44Be3xraysZCovAMyNRIxRAl9+SPe4dGVQq9Vsjxst/KNSwERtf8SCOtssLy8H2SuF+nxLoYCjN7RYWu5kgT8ddXZ2FhMTE8jLy8P7778vyKk1GfD7/Thz5gxKS0tRXFyMr371q9Dr9XjggQdSGq1FcHQR5dYiBJISnD8nnA+qC29qamJG9D6fDz09PcjPz0+o3svP9lZXV8PhcMBgMKCzsxMcxzGy85snaGkm1ZZOofZKkW5o4fzX+e8pnnIV7bNO9Q0NWPW9n5ubw759+6BUKplT6+LiIntPtJsumQ1DdOWmN5mvfe1rSE9PxyOPPJLyOeMCHV0SRspDdJpM4ydUXC4Xc1WNdxppJGi1WlRWVqKyshJutxsGgwH9/f3w+XzMCpdO3UhFaYaC2itptVpRGWtg1QqpqqoKVVVVQeUqapYQSwGXTC23WMzMzGBhYQHt7e0sWqHzwunQRzp0YWhoiDUMFRQUJJSLCAQC6OrqQlFREUpLS/GNb3wDfr8fP/rRj1JObkCwo0vCkDTJ5vV6MTY2hrS0NJSVlbGhBrS+ynEc61pKtZba4/Ggv78fFosFarWatZhKXX4DPkhqFRQUJHUAghAFXKq03OEwPT0Ng8EgasqJ3++HyWTC4uIilpeXI45CjoZAIIDu7m7k5+dj+/bt+Na3vgWDwYDHH39cUsfZ8fFxXH311WGTbK+88goeffRRfpLth4SQ/ck+B0kJ7vP5MDExwaZDZGVlUZtYcByH2dlZzM7OorW1NeWrJ23mqK+vByEkJeU34IN9744dOyStr4ZTwGVmZmJhYUGySabRMDk5CaPRiNbW1rhJxR+FbDQaoVKp2PYkmhElLf/t2LEDDz30EMbGxvB//+//lZTcn/nMZ/CHP/wBS0tLKC4uxje/+U1mQHr77beDEIK77roLr732GkZHR3sA/B0h5GSyz0Nygo+NjWF0dBS1tbXMcA9AkDIqVTOr6Dl1dXVF3OtLVX4DPrB1Wo9E3vT0NEZHR6FWq9lYXakVcBS0xTjZI4ycTicT+tASHO0rpxNWuru7kZOTg4qKCnz/+99Hd3c3fvWrX0k2BDFObM5GFzqpMi8vD42NjcwQsbe3l7U8pjJzSff6QldPfvnNaDQiMzMzrvIb8IG9Uqq3IsBaLXcqFHAUtELQ0tIi6V6X31e+srICnU4Hh8PBZrw/9thjePvtt/Hss8+mtCQnEJuT4HNzc3C5XJiYmEBNTQ0yMjLQ3d29LnVmuveMV2LKL78tLS0JLr8BH2Tpo5kWSIW5uTnMzMxEHF8khQKOYnR0FCsrKyk3xaDZcq/Xi2eeeYb9/+9+97sNOcMbm5Xg5+YuIS0tjX3Z1LtcSh+tUFD/smT6iNHy2+LiYsTyG/CBWKWtrS2leQbgg7ncQpNayVDAAas3QzqNk6rRUgVCCPr7+6FSqVBdXY0nn3wSL7zwAi655BL893//N37+858zl5YNhM1J8B//+Md4+umn4XQ64XA48NxzzyEvL4/tb+O9gMRgZmYGs7OzaGtrk6yBIrSfnO5vTSZTwvZK8WJsbAxWqzXu0JivgDOZTIK14IQQjIyMMKlpKrdgtK9AoVCgtrYWv/rVr/Dss8/ipZdeSlrkRCeC+v1+3Hbbbfj6178e9Pfl5WXcdNNNmJychM/nwz/+4z8K0ZNvToIDwEMPPYT/9//+Hy699FK8+uqrIITgmmuuwaFDh5Cdnc0uoOzsbBQXFyclmQV8sIrQEDFViTyv18vEEx6PB2VlZSguLk5J+Q0Ir+VOxjH59tLUZ76oqCgoe01HNvl8PjQ0NKSc3IODgwCAuro6PPfcc3jyySfxyiuvJC1q408E3b59O/bt24f/+q//QmNjI3vMgw8+iOXlZTz88MNYXFxEfX095ufnYy0um1cPfsUVV+Dee+9FWloa7rvvPszNzeHo0aO488474XA4cPXVV+Paa69FQUEBDAYDhoeHkZWVxZJZ8RCTyh5VKlVKB/ABq409ZrMZer0eNTU1bPa01OU3ILKWO1HwG1HoRNRwY5RmZmYAYF3IPTw8jEAggF27duGFF17AL3/5y6SSGwieCAoAN9xwA1588cUggnMcB5vNxnI2icxeSwYkX8EjHpgQGAwGPP/882y201VXXYVDhw6htLSU6aUzMjLY/lbIB+X1epkyKplNJEJAJZe5ubmorKwMusilLL/R49OZaGI74xIB9XAbGRmBz+dDaWkpioqKIo4dkgLDw8PweDxoaGjAK6+8gv/4j//AK6+8knS/viNHjuC1117D448/DgD4z//8T5w4cQKPPvooe4zNZsO1116Ls2fPwmaz4Te/+Q0+9rGPxTr05l3BI4HjOBQXF+P222/H7bffDqPRiBdffBHf+MY3MD8/j8svvxyHDx/Gjh07sLi4iFOnTkGtVqO4uBiFhYVh94FOpxNdXV2oqqpKestrLFCbqdLS0rCZ2kjqt+Hh4YTKb0DytNzxQKlUwmw2o6ioCNXV1SlRwPHB3+//93//N773ve9JQm4gfP946I309ddfR3t7O958802MjIzgsssuw0UXXZTy0ijFhqn26/V63Hrrrbj11lthsVjw8ssv48EHH8T4+Dguu+wyXHfddaipqWG1daVSySyR1Go1qzOn2gUFEG+vlAz1GwWV3BYXFyd94GEsEELQ19fHfMyoSERKBRwfY2NjbODFW2+9hQcffBDHjh2LaIqZKEL7x6enp9d45T3xxBPMMKKmpgZVVVU4e/Ys9u9PeheqIKxbiC4UNpsNr7zyCo4ePYqBgQF8+MMfxqFDh9DU1MSaNXw+H7xeL1pbW1NObiozTdaM6nDlt9BkFoXUWu5ooHmOjIwMQQ1LVC1G31eiho3j4+OwWq1obm7GX/7yF/zLv/wLfve730na/uvz+VBXV4ff//73KCsrw759+/DMM8+gqamJPeaOO+5AcXEx7r//fiwsLKCjo4ONto6CzZtFTyYcDgdee+01HD16FF1dXbjkkkugUCiQn5+P66+/ng2oo6SQelYYHTrY0tIiicw0XPmNdpylWsvNB1XC0aSbWPBnpglVwPExOTnJ3HXfeecd/NM//RNefvnllDSxHDt2DPfccw/8fj9uvfVW/PM//zN++tOfAljtMZ+dncUtt9yCubk5EELw9a9/XYinukzwUDgcDtx8883o6upCeno6LrjgAlx33XXYt28fTCYTFhYWEAgEGCmS3UFGQ8+2traUzOmi5TeDwQCHwwGv14udO3di+/btKc1YU/EGTSQmCiEKOD6mpqaYaOXUqVP4yle+gpdffjnpVlMphkzwUExOTuLxxx/H/fffD5/PhzfffBNHjx7F8ePHceDAARw+fBgHDx6ExWJh00ILCgpQXFyccOlkdnYWMzMzKfcRAz4YZVtSUoKVlRVGiqKiIuTl5UlKdqqppkMYpDh+qAKuqKiISUOnp6dZZ15nZyfuvPNOvPDCC6iqqkr6uaQYMsGFwufz4U9/+hOee+45/OlPf0JHRwcOHz6Miy66CDabDQsLC3C5XGxlFzOcjlopU2VUKlVwwAf99PwtASXFwsIClpeXWflNr9cntUxFzSjpZFepwZ8NTqeQEEJQXl4Oi8WCv//7v8fRo0dRW1sr+bmkADLB44Hf78f//M//4MiRI3jrrbfQ1NSEw4cP42/+5m9YZ5bD4RDktU47pWiXVqpdQOisrlhTNpOlfuODijeKiopSnqkHVgUzU1NT0Ol0uOWWWzAzM4Obb74Zf//3f49du3al/HwkgEzwRBEIBPDuu+/iueeewxtvvIHa2locPnwYH/nIR+B2u7GwsMA6j4qLi4PUVLSJJD09XdIxxZFALaTF7PcTUb/xQcldXFy8Lkqs+fl5TE9PY/fu3RgeHsbnPvc5PPbYYxgdHcXY2Bjuv//+lJ+TBJAJnkwEAgGcPn2adSbt2LED1157La644gr4fD4YDAZYrVbk5eVBr9djcnJyXTrjgOTN5RZTfqOgNfbS0tKUzkajWFhYYGOjJiYmcOONN+Kpp55Ce3t70l4jlngEAP7whz/gnnvuYXmcP/7xj0l7/XOQCS4VCCHo6enBc889h2PHjqGwsBCHDh3Cxz72MSwtLWFsbAyZmZnQ6/UoLi6OmN2VArG03PEiWvmNgg4GKCsrS3mNHVitUtAb2+zsLG644Qb84he/wN69e5P2GkLEIxaLBRdeeCFbCAwGgxRdkjLBUwEq1jhy5AiOHDmCxcVF3HjjjbjzzjuhUqlgMBhgNpslS2TxIVbLHS/45TeXy4WCggLk5+djeHgYFRUVKC4uluy1I4HOKdu9ezcWFhbwqU99Cj/96U9xwQUXJPV13n77bdx///14/fXXAQDf+c53AAD33Xcfe8yPf/xjzM7O4oEHHkjqa4dAMoKn3i92A4PjODQ0NODmm28GsPrl6vV63Hjjjfjbv/1b/PGPf0RlZSW2bdsGk8mEEydOoLu7m62EycLY2BhMJlOQtbBUUKlU2LZtG9rb27Fv3z5otVp0dXXB7XbDYrHAZDJF8vCWBEajkZF7aWkJN9xwA374wx8mndzA2uED27dvZ4o4isHBQZjNZnzoQx/Cnj178NRTTyX9PKSE6NRqrD0Lf6iaVqvFk08+iY6OjqSdcCqwfft2vPLKKyxj/LWvfQ0TExP47W9/i1tuuQUAmKY9JycHBoMBo6OjcY9MouBruaX2MAsHv9+P6elpNDU1Qa/Xw2QyYX5+HgMDAymJWkwmExsfbDKZcP311+O73/0uLr74YkleT4h4xOfz4dSpU/j9738Pp9OJgwcP4oILLkBdXZ0k55RsiLoK/X4/vvSlLwXtWa699tqgPcurr76KoaEhDA0N4cSJE7jjjjtw4sSJpJ+4lEhLSwsqB3Ech8rKSvyv//W/8NWvfhWzs7M4evQobr/9drhcLqZpLyoqYqIRjUaD4uLimA4oFFJpuYWCDoqsrq5mfdOhwpGFhYWkqN/CwWw2Y2hoCO3t7bBarbj++uvxne98B5deemlSjh8OQsQj27dvR0FBATIzM5GZmYmLL76YTYTZDBB1K+YL3tVqNRO888EfqnbBBRfAYrFgbi6p45bWFRzHoaysDF/+8pfx5ptv4oUXXoBer8c//MM/4JprrsHRo0eh0+lQU1MDp9OJ06dP4/Tp05iZmYHH4wl7TNrbrVKpUF9fn3Jyu91unD59GjU1NWFFEVT9Vl9fjwsuuABVVVWw2+04depUzPcmBBaLBQMDA2hvb4fdbsf111+Pb37zm7j88ssTeVsxsW/fPgwNDTH3nV//+te49tprgx5z6NAh/PnPf4bP54PD4cCJEyc2oqdbRIi6/Ybbs4SuzpH2NeuRiZUa4TTtL7zwAv75n/8ZBoMBl19+Oa677jpUVFSwuVsKhYKVqDQazbpquYEPyC3Uqz109ht/pphCoQhr5RQNy8vLOHv2LNrb2+F0OnH99dfj61//uhCThIShVCrx6KOP4vLLL2fikaampiDxSENDA6644grm6X7bbbehublZ8nNLFkQRXMieRchjtir0ej0+//nP4/Of/zwsFgteeuklPPDAA5iYmGCa9traWiwuLqK7uxuEEHg8Hmzbtm1dyO1yuXDmzBnU19fHbZBAQ9fKyso1Vk7hym98WK1W9Pf3o62tDR6PB5/61Kfw1a9+Fdddd10ib0sUrrrqKlx11VVBv7v99tuDfr733ntx7733puyckglRBBe6Z4n1mPMBOp0ON998M26++WZYrVa88sor+N73vofBwUF8+MMfxiWXXIKXX34ZX/jCF5j7amFhIYqLiyWXuQIfTBdNlo4dANLT01FeXo7y8nJWfqMDBOlwBSoJtdls6OvrQ1tbG/x+P2644Qbccccd+NSnPpWUc5GxClF1cCGCd/5QtRMnTuDLX/4y3n33XYlOf/PB4XDgmWeewX333Yeamhrs3bsXhw4dwu7du5ls0ufzxVz9EgEld6qmi/r9fjZcYWVlBVlZWVheXkZ7ezsUCgU+/elP46abbhJiL7xVsTE82YTsWa666iocO3YMNTU10Gq1eOKJJyQ58c0KrVaL9957D88++ywOHjyIN954A0899RTuuece/NVf/RXTtNOsstvtDpK5JrrdcTgc6OzsTOkIpbS0NBQXF6O4uBhWqxWdnZ3IycnBFVdcAbfbjUsvvRSf+cxnUnIu5xs2VCdbrBr7r371Kzz88MMAgKysLPzkJz9BW1tbKk8xKaDTVfnweDx48803ceTIEbzzzjtBmnar1YqFhQU4nc41oa4YUC35eowO5r9+S0sLVCoVbrrpJtTX1wMATp06hbfeemtdZnVvAGz9VlUhfcHHjx9HQ0MD8vLy8Oqrr+L+++/fdDV2IfD5fPjjH/+II0eO4M9//jM6Ojpw6NAhXHLJJbDZbDAYDLDb7Uz5JmSowsrKCrq7u9eN3HSyalNTE9LT0/G5z30OF198Mb761a8mNQkrRDwCAO+99x4uuOAC/OY3v8EnP/nJpL1+nNj6BBfSF8yH2WxGc3PzmtbCrQa/34+//OUvOHr0KN566y00Nzfj8OHDuPTSS+FwOLCwsACbzYb8/Hw2VCGUMJTcUnnHxQLd8zc1NSEjIwOf//znsWfPHnzta19LKrmFLBL0cZdddhnS09Nx6623bmmCbxjbZCE1dj5+8Ytf4Morr0zFqa0r0tLScMkll+CSSy5BIBDAiRMncOTIEfz7v/876urqmKbd4/EwP3KdTscsnOx2O3p6etDa2ipJwi4WqKV0Q0MDtFotvvjFL6K5uTnp5AaETR4BgB/96Ef4xCc+gffeey+pr78RsWEILqZ+/tZbb+EXv/gF/vKXv0h9WhsKCoUCBw8exMGDB5mm/bnnnsN3v/tdVFZWMk17IBCAwWBAf38/vF4v6urqUlJ6CwWtszc0NCArKwt33303Kisr8a//+q+S9EYIbcR6/vnn8eabb8oETyWE1s+7urpw22234dVXX5XM4H4zQKFQYM+ePdizZw8efPBBpmmnPfG7d+/G6dOn8dhjj8FiseDEiRPIzs5mghGpVWputxtnzpzBrl27kJ2djXvuuQcFBQV44IEHJGt8ErJI3HPPPXj44YdT7qe3Xtgwe3AhNfbJyUlceumleOqpp3DhhRem6tQ2FQgheOaZZ3Dvvfdi586d0Gq1zMBCo9EwvzatVsvEMMm+2Klwpba2FjqdDv/0T/+EtLQ0/OAHP5A0Sy4kj1NVVcVuBEtLS9Bqtfj5z3+Ow4cPS3ZeArD19+BCauzf+ta3YDQaceedd7LnnDx5cj1Pe8OB4zh0dnbi3XffRVlZGYaHh3H06FF89rOfRXp6Oq699lpcc801yMzMhMFgwNjYmOgBj9FAyV1TUwOdTodvfOMbCAQCePTRRyUvgfHFI2VlZfj1r3+NZ555JugxY2Nj7P9vueUWXH311etNbkmxYVZwqbFJyydJA7V8Pnr0KF544QVwHIdrrrkGhw8fRk5ODps0EmvAYzR4vV6cPn0aO3fuhF6vx7e+9S0YDAY8/vjjKQuJY00e4YMSfAN8z1u/TCYlNnH5RBIQQpim/fnnn4fb7cbVV1+NQ4cOMU374uLimgGP0UDJXVVVhYKCAjz00EMYHx/Hk08+ed7sdxOAbNmUCITo2IEPyiepHj2caoRq2p9//nnk5eXhnnvuwdVXX40jR45Ap9Nh165dzDb51KlTmJqagsvlWnM8atBYWVmJgoICfP/738fg4CCeeOIJmdzrjPOC4EK8t2j5JDSM2+qgmvY77rgDb7zxBrOq+t//+3/jiiuuwDPPPIPMzEw0NjaCEILe3l689957mJiYgNPpZOTesWMHCgsL8dhjj+H999/H008/nTS3Fxnx47z4BuTyiXAUFBQwTbvZbMbLL7+Mb3/725icnMRHP/pRHD58GPX19VhaWkJvby9sNhsyMjJgMBjw4osv4s9//jOOHj2a8pltMsLjvCC4kBr7yZMnccMNNwBYLZ8cO3YMSqVyS2dYYyEvL2+Npv3//J//g6GhIVxyySV455138Mgjj8Dj8eCOO+7AxMQE7rrrLoyNjTERiYx1BiEk2r8tAa/XS6qqqsjo6Chxu92ktbWV9PT0RHz85z73OfLcc8+l8Aw3F4xGI2lvbycXX3wxaWlpIR/5yEfIxRdfTGZnZ8nTTz9NnnzyyaS8zquvvkrq6upIdXU1+c53vrPm708//TRpaWkhLS0t5ODBg+TMmTNJed11QCwexv3vvCA4IYS88sorpLa2luzcuZM88MADhBBCfvKTn5Cf/OQnax4rEzw6/vjHP5Kf/exnhBBCnE4n+c53vkMWFhaS+ho+n4/s3LmTjIyMsJtyb29v0GP+53/+h5hMJkIIIceOHSP79+9P6jmkEDLBNzJirTSEEPLWW2+RtrY20tjYSC6++OIUn+Hmw/Hjx8lHP/pR9vODDz5IHnzwwYiPN5lMZNu2bak4NSkgGcHPiz24lBDiFW+xWHDnnXcGzbeSER2yujA5kAmeIIRIFJ955hl8/OMfZ9NJt3qdPRkgsrowKTgv6uBS4nyYb7UeEKsufPHFF89rdWEkyCt4ghCy0mz2+VbrASHCkcnJSXz84x/Hf/7nf8qfZQTIBE8Q58N8q/WArC5MEmJk4WTEgJAae19fH7n00kuJ1+sldrudNDU1ke7u7nU6YxkbEHIWfaPifJhvJWPz4ryQi252xNKyLy8v46abbsLk5CR8Ph/+8R//8XyeErIZIevBz1cI0bI/+OCDWF5exsMPP4zFxUXU19djfn4+poZbxoaBrAc/XyFEy06H+RFCsLKygvz8fFmqKQOATPANDyF19rvuugv9/f3Ytm0bWlpaJDc3lLF5IF8FGxzhtlChdfbXX38d7e3tmJ2dxZkzZ3DXXXfBarWm6hQF4bXXXkN9fT1qamrw0EMPrfk7IQRf/vKXUVNTg9bWVrz//vvrcJZbEFKm6OV/if8DcBDA67yf7wNwX8hjXgFwEe/nNwHsX+9z551PGoARADsBqAF0AmgMecxVAF7F6n70AgAn1vu8t8I/eQXf+HgPQC3HcVUcx6kB3ADgpZDHTAL4MABwHFcMoB7AaErPMjr2AxgmhIwSQjwAfg3gUMhjDgF4iqziHQA6juNKU32iWw0ywTc4CCE+AHcBeB1AP4BnCSG9HMfdznEcNZD7NoALOY7rBvB7AF8jhCytzxmHRRmAKd7P0+d+J/YxMkRCTrVuAhBCjgE4FvK7n/L+fxbAR+M9PsdxvwRwNQADIWRNBw63uun/AVbDaAeAWwghYjbJ4cpAockFIY+RIRLyCi4DAJ4EcEWUv18JoPbcvy8A+InI408DKOf9vB3AbByPkSESMsFlgBDyJwCmKA9JdH8sJI/wEoCbuVVcAGCZEDIn4jVkhIEcossQgkj7Y0EEJIT4OI6jeYQ0AL+keYRzf/8pVrcgVwEYxuo2QO61TQJkgssQgoT3xwLyCATAl+I6OxkRIYfoMoRA3h9vUsgElyEE8v54k0IO0WWA47j/AvAhAAUcx00D+DcAKkDeH292xJKLypAhYxNDDtFlyNjCkAkuQ8YWhkxwGTK2MGSCy5CxhSETXIaMLQyZ4DJkbGHIBJchYwvj/wMxSPPOedjAkAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = plt.figure()\n", "ax = fig.add_subplot(1, 1, 1, projection='3d')" ] }, { "cell_type": "markdown", "id": "764c6aaa", "metadata": {}, "source": [ "Vytvoříme mřížku $x\\times y$ pomocí funkce `meshgrid`:" ] }, { "cell_type": "code", "execution_count": 47, "id": "288e3065", "metadata": {}, "outputs": [], "source": [ "osa_x = np.linspace(-2, 2, 50)\n", "osa_y = np.linspace(-2, 2, 50)\n", "(x,y) = np.meshgrid(osa_x,osa_y)" ] }, { "cell_type": "markdown", "id": "37509518", "metadata": {}, "source": [ "Spočítáme hodnoty funkce $z(x,y)$:" ] }, { "cell_type": "code", "execution_count": 48, "id": "20d9e183", "metadata": {}, "outputs": [], "source": [ "z = np.exp(-np.sqrt(x**2+y**2))*np.cos(2*x)*np.sin(2*y)" ] }, { "cell_type": "markdown", "id": "c0d125e3", "metadata": {}, "source": [ "3D data vykreslíme pomocí funkce `plot_surface()` a přidáme popisky os:" ] }, { "cell_type": "code", "execution_count": 49, "id": "981cfb7e", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "[Text(0.5, 0, 'x'), Text(0.5, 0, 'y'), Text(0.5, 0, 'z')]" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAADyCAYAAACvQWuHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACiqElEQVR4nOz9d3Qce3bfi34qdc7d6EYjR4I5k2fmzJmo0bU1VrSCLUd5yfc6SM+ynCS9p3sl2da1pOXr63lLcpJk2brPkmzlrLEmnJnRSQyHJEiQyBndDXTOqcL7o7qbIAiQABjmzBl81+IiCVRXV1dXfWv/9v7u7xYMw+AIRzjCEbZD/EofwBGOcIT3Ho6I4QhHOMJjOCKGIxzhCI/hiBiOcIQjPIYjYjjCEY7wGI6I4QhHOMJjkJ/y+6Na5hGO8OIhfKUPYCeOIoYjHOEIj+GIGI5whCM8hiNiOMIRjvAYjojhCEc4wmM4IoYjHOEIj+GIGI5whCM8hiNiOMIRjvAYjojhCEc4wmM4IoYjHOEIj+GIGI5whCM8hiNiOMIRjvAYjojhCEc4wmM4IoYjHOEIj+GIGI5whCM8hiNiOMIRjvAYjojhKwDDMGg0GqiqypF9/xHei3iaUcsRnjN0XafRaFCr1To/kyQJRVGQZRlJkhCE95xvxxG+xiA85Yl19Dh7TjAMA1VVUVUVQRBoNpudnxuGga7rHUKo1+u43W4sFssRUXxt4D33BR9FDC8B7aXD9pu/DUEQEAQBURQ72y4sLDA0NITD4QCOIoojvHwcEcMLhqqqrK+vo2kavb29CILQiRJ2u8HbRCFJEpIkdaKJarXa2V6W5c6fI6I4wovAETG8IGxfOui63llCHBS7RRSapqGqamcbWZY7EYUoikdEcYRnxhExvADouk6z2ewsHdpRwn7xpO3b+2tjJ1EIgvBIRHFEFEc4DI6I4TmifZO2E4vtp/xeN/pey4mDYDeiUFW1cwxHRHGEw+CIGJ4TDMOg2WyiadpjN+tOYnhaFHHQCGPna4+I4gjPiiNieA5oaxPaEcBulYevlJBpN6JoNpuk02lKpRK9vb2dHIUkSUdEcQTgiBieCTu1Ce2lw048zxzDs6Jd8WiTWVtTsT2iaCcyZVneleiO8P7HETEcEju1CU+6eXa70UulElarFUVR9tz/i0R7/22i2P7zRqNBvV4HzDyJoiidiOKIKL42cEQMh0A7wbjX0mEnthODpmnMzMxQLBY7+Qifz4ff78fr9b5UXcJeOoq9iKIdFe1cehzh/YcjYjgA9rt02Ik2MZTLZSYnJ+nt7WV0dBQwBVC5XI5UKsXCwgKyLKOqKsViEZfL9RW/8bYTRZvcGo0GjUYD4Igo3qc46pXYJ3bTJuwXmUyGxcVFGo0Gp0+fxuPxPJKs3I5Go8HU1BSSJFGr1bBarfj9fvx+Py6X67lFE6lUikKhwMjIyKH30b52dF3v/OyIKA6F99za7ChieAra2oT5+XkGBwcPTAqaprG0tESlUuHVV19Flp98yi0WC06nk3A4jM/no1qtksvlWFtbo1QqYbfbO0ThcDgOTRTPI4fRfu/tEUV76dGOKDRNQ5IknE7nEVF8FeGIGJ6A7dqEeDzO8PDwgV5fKpW4e/cuwWAQq9X6VFLYDXa7HbvdTjQaxTAMqtUq2WyWpaUlyuUyLperQxR2u/1A+37euYzdSqPJZJJqtcrAwADwMJnZ7vM4Ior3Jo6IYQ/s1CYcFOvr66yurnLmzBl0XWdtbW3fr92rXCkIAg6HA4fDQW9vL4ZhUCqVyGazzM7Odtq120RhtVoPfNzPE9sjinZDmGEY1Ot16vU6hmE8suxol0eP8JXHETHswHZZ8/YEY/tmfdqFq6oq9+/fRxAErl69iizLFAqFF1J+FAQBt9uN2+1mYGAAXdcpFotks1nu37+Pqqp4PJ4OUexVGn2R2H7OdosodF0/Mq15D+KIGLbhSdoEQRDQdf2RUt5OFItF7t69y+DgIL29vY+8dicxvAhJtCiKeL1evF4vQ0ND6LpOPp8nm82ytraGYRid0uj27swXiSeR6RFRvHdxRAwtPE3WLIrinjerYRisra2xsbHB2bNncblcj/z+KyWJFkWxEy2AGc20iSKZTHZCe7/fj8fjeSLpHRYHWYrtRRTbvSiOiOLl4GueGA4ia95elmtDVVXu3buHLMtcvXp115vrvSKJlmWZYDBIMBjE4/FQLBZxu90kk0nm5+eRZblDJG63+7kkBg3DOPR+dvOiOCKKl4OvaWI4iDZBFMXHiCGfzzM1NcXw8DDRaHTP134lm6ieBEmS6OrqoqurCzC9JrPZLLFYjGKx+Fw0FM+jtbyNpxFFIpGgt7f3iCieA74miWGnb8JBZc2GYbC6ukosFuPcuXM4nc59v3Y/eBlEstv+rVYr3d3ddHd3A3RKo6urq5RKJRwOx4E1FM+TGHZiJ1FsbGwQjUYfs8E7crc6OL7miGHn0mG/F0o7Ymg2m9y7dw+r1corr7yyrzD5vRoxPO2ztzUUPT09GIZBpVIhm82yuLhIpVLZl4ZC1/WXplVok8RuNnhtgjoiiv3ha4oYnkXWLAgChUKBxcVFRkdHO0/V/b72vRYxHBSCIOB0OnE6nfT19e1bQ/EiI4b9HPPOZOaRDd7+8DVBDHtpEw7y+nK5zNLSEhcuXOjYuu8X70VieNb970dD4fV6qdfrB1ZkHhZP+0xH7lb7x/ueGNqy5nfffZfz588f+ItuNBrcvXsXXdc5derUgUkB3psRADxfSfRODYWmaZ0Ia2VlhfX19Y6GwufzvZDS6EGxl7vVTqL4WnS3el8Tw3ZtQqVSOfCX2n76jY+Pk0qlDn0cO4mhrXsQBIFAIPDYE/W9SiQHgSRJHY+JQCCAx+Mhn8+TyWRYWlpCFMVHfCieRx7iWW/a3bwo9nK3er8TxfuSGHbTJhzkCzQMg8XFRVKpFBcvXsRut5NOp5/JoHW7l8Hk5CROpxNFUTrrc6/X+4gY6f2C7Um/toYCoNlsks1m2draei4aihclOd/LtCYWixGJRHA4HO9LG7z3HTEcxHJtN9Trde7evYvH4+HKlSudC3Q3HcN+0SaGdgRy7NgxAoEAqqp21ueFQoFMJsPa2hq1Wg2Xy4WiKB1Xp+eNlxWR7JV8VBSFcDhMOBwGdtdQBAIB/H4/Tqfzqd/jbuP/nje2E0UmkyESiTzibtWOKN4PXhTvK2LYmUjaeaE8LUOeTqeZnp7m2LFjHdFPG88a3tdqNWZnZzsRyPZehXZY7fP5AFheXqbZbD7i6uT3+wkEArjd7ucqGHrR2G9VYi8NxcrKCqVSCafT+UhpdLfv9mXeiG2fib3crb7/+7+fH/3RH+X48eMv7ZieJ94XxLAfbUL7ib/b09cwDObn58nlcly6dAmbzbbn6w8KVVW5e/cuhmE8EoE8CZIkYbVaO2rK9tN0fX29Y9bSfprudpO8l3DYcuVeGoqFhQWq1eojGgqbzfZS9RLAY9fSdok2mBHFy6rGvAh81RPDfrUJexFDrVZjcnKSQCDA5cuXn9gJeNCIod1tOTw8TLVaPfSFu/1puv0mmZ+fp1ar4Xa7O0RhsVgO9R4vCs9r2tZeGoqZmRnq9TpOp5Nms0mj0Xhp5+BJn6ttovPViq9aYthrHNxe2O2Jn0wmmZ2d5fjx452k2EFe/ySsr6+ztrbW6bZcWlra9TPsdnE9rSV7+02yXT+wsbGBpmn4fD4CgcATy4Jf6RzDs2A3DUUymWR5eZmpqamOhqJdGn0RPhRPO39tZehXK74qiWG75dp+E4zbb2xd15mbm6NYLHL58uV9OR3tN2LQNI379+93lg6HsXM7CHbTD+RyuY79W7v1up2f2E6g76Ucw7NAFEWcTidut5uTJ0+iaVqnvXx1dfURH4qXpaFoNpvvuejtIPiqI4an+SbshTYxVKtVJicnCYVCXLp06cCvfxLa9vB9fX309fUd+oZ4lkSnJEmPlAUbjcYj2X6bzdYxannRpAUvTxK9PccgSRKBQIBAIAA8tOh/nhqK93Je53ngq4YYDjvToQ1RFEmlUqyvr3Py5MkD6wWeRgyJRILFxUVOnTqF1+s90L5fJCwWC5FIhEgk8oiZ7MJajJvLKf7c+RyRrhCBQOCFeER+JYhhJ2RZJhQKEQqFAJMsc7kcW1tbzM3NoShKJ0ezn6rP00j7K9kf8rzwVUEMz6pNaOsEqtUqV65cOVSIt5dRi67rzMzMdPb9PNaze73X89hvTRP4qT+e5nN3lhAMjV+7ESfilPiOy/2cGwh2lIo+n++5RBQvq4x4kKqExWLZVUOxsbHxSFS1l4aiXap8Er7ayeE9TwztuQyBQOBQcxQqlQqTk5PIssz4+Pih1327hfe1Wo07d+4QDoc5fvz4e15f8Ps3l/jx37xBvVpFE8zBtvVqjWKxyc/8QY5/+u0f4ttHQ2SzWZaXlxEEoXODHDbkfpkRw2HfZ2fVp1ardTQU5XL5ER8Ku93+VGJQVfU90QvyLHjPEsP2pUOhUDiUsCeRSLCwsMCpU6dIJBLPlInfuZRIpVLMzMxw4sSJzlr2IHjWcPWgeBDL8S9++13K9QaCrgFgF3WqooTVLlGr1vj5P76Gqmv8vW/+MPCobHlubq7j6BQIBPalRoSXo0hsv8/z6rfYqaEol8uPlIdtNhuNRqPz750ol8tPNe95r+M9SQw7tQmiKKJp2r5f3x4cW6/XuXr1KoqikEwmnyk8b5vBGobBwsIC2Wx23xWNg+J5N1GVqg1+8P95E0MQcVoUyohYUWlWqwDUNXDZJJK5Ij/7W19kIOTjL7x65jHZ8k41YltkFAgEdr1B4L2RY3gWCIKAy+XC5XLR39+PYRhsbW2xurrK9PQ0jUbjEYt+i8VyaA2DIAh/Hvg0IAG/YBjGT+2x3RXgbeAvGYbxG8/y+fbCe4oY9rJckyRp3zd1uzLQ09PDiRMnOhflQcllJwRBoNlscvPmTbxe7xPFUO81/L3/8gaJYp2GBkLTPAeNRgNdUFCkJpqqUmtoSJIIosQ//Q+/zdmxHvrDj2o7dnuSZjKZDglvbwRr51peFjG8rFyGIAjYbDY8Hg8TExOd/FU7RxGPx/n1X/91arUa+Xx+34loQRAk4OeArwfWgeuCIPyeYRj3d9nup4HPPOeP9gjeM8TwJG2CJEn7uqljsRjLy8u7VgaepQkKTMKJx+OcOXPmsT6K543nGTHcWkoxvVmmoRmgaWit3eqajiCKyIqNRjUNgM1qpVKt4VRk/sGnf53f/sm/+8RjbD9Jd2sEa9vStyO/F73mfpmS6O05hu19LsPDw1QqFVZXV/nVX/1VPvWpT/Gxj32Mn/zJn9zPbq8C84ZhLAIIgvBrwLcA93ds9/8CfhO48tw+0C54TxDD07QJT4sYNE3jwYMHqKramf60E4clBsMwOkYj2x2VnxWapqFp2gu/mP/337lNtakCArraBEHA0DSE1vvWGip2m41qrUZdNTAMkESRhfUkv/B7X+Jvf/NH9vU+OxvB2tqBWCzG7du3kWX5QCXBg0LX9ZeiywCe+L05HA5OnTrFhz70IX72Z3/2INdcL7B9juE68Mr2DQRB6AW+DfgE72di2K/l2pOWAe3BsU8TFR2GGLYbv548eZJEInGg1++FYrHI5OQkQOeGCQQCHYv25xUx/OGdNVazNVwWiYaqI0g2yrUmAuYkagMwNJW6ASBgYOB2WMkXi6Br/OIfvME3f/g8Yb/nwO/d1g7YbDauXLlCvV4nk8mwvr5OsVjE4XA810awr1TEsBu2y6EPcEy7nYCdF8G/BX7IMAztRS/PvmLEcBBtgiRJnbzDdmxsbLCyssKZM2dwu91PfD9RFHfdx14oFArcu3evMzMin88/s7bAMAzi8TjLy8ucPn0aq9VKs9kkk8l0LNpdLlfHIehZ8W//57Sp9jREVENCUJsIkoRDUiiqKgIGAjoGIMkyarNOpW62g7uddlKFMv/w07/Gr/z4//bMx9LuFm1P7a5UKmQymefWCPYyieFpS6NDViXWgf5t/+8DYju2uQz8WuteCQGfEgRBNQzjdw76Zk/DV4QYDiprliTpkXmG7cGxwJ5Lh504SMSwswGq/fpneYobhsGDBw86lZJ2MnPnDVMqlVhbWyOdTpPNZvfVELUbfvnNRQpVFVGUUHUDWTBotA6/VGsgKhYcokqx9UNdkDA0zXxEiRLFagMJmJxf58/uzPHaufFDf/ad2N4I1t/f32kEy2QybGxsoOv6gXsbXnbE8KRr7pBVievAuCAIw8AG8JeBv7J9A8Mwhtv/FgThvwB/8CJIAV4yMRxW1rz9pt5rcOxB9rEXntQA9SxqxHq9TqVSobu7u1Mp2b40+nd/cos/vbPCYNjDfDxLv9/B0laB00Nh1pMb9HotlCt1+vw2esN+zo32cma4B0Xeu3PyP35xnmpTR5YENN2g0ai3fwlCK7+gGkgCaAYIAgiihKGriJKErmsYrZjix//z7/LZT/+TQ332/WB7I9jw8HCnEWx7b8P2/MRu183LJoYnlanL5fKBtS2GYaiCIHw/ZrVBAv6zYRhTgiD83dbv/8MzHPKB8dKI4VlmOkiShKqqrK2tsb6+vuvg2KfhacTwtAaow0YMbTs3m83G0NDQY/v9+T+d5M3pGBGfg1ShSm/ATaZUIeC0sJEpI0gS05tVMqUqs5k669c2OBldYX6ryAeGg5zoD/GNVyeY6A939vnfr63QVHVT3diogyhh6Jp542vNzjGoqobVYkWt1bApEjVZxmhq6AY47FZkoFgqk0jn+a3Xr/MXP/ZC810d7KcRrE0UbTXsyyaGJ71XuVymv79/z9/vBcMw/gj4ox0/25UQDMP4ngO/wQHwwonhMOPgdqLdb69p2p6DY5+GJxFDuwHq9OnTeDy7J9oOGjG0x9jF43EuXrzI5OTkY8Tym2/P8jvX5wg4bUwup+jy2Lm1lCTkslKoNjCAgMvORqbE+aEQiVyFj58eoFxrcixqYS5Z5ktzSV6fWqPeVPnG8wN82weP8z+ur3bKkoos0dDBpkjUNUDXHjnGui7gsMqUK1UEQEcADDPXoDZw2BTQdX7uNz7Pt330K6Pd2KsRrD0Ry+12U61WH7HLe5HYT47hq9mLAV4wMRx2HNx25PN5pqensVqtnD59+tDHshsxtBugarXaUxugDhIxaJrG1NQUoihy5cqVznDV7a//7OQK/8evvclAl5vJlRR2i0yyUMVhkfG5rNgtEoMRH5WayljUx2IihyjA9bkE5XqTM4MhSg2dj5zqJ1eqMbeZ5I2FNL/4xmcwXCEMAxAkZBEaqoqGhKE38NgVCtUmYCAKAgagIreWGAKCJGM06y16gGpdRTB0lhNp/tPvfIG/822fOPC5f54QBAGHw4HD4aC3txfDMCgWi0xPT7O0tMTi4uJzbwTbiadVJY6I4QloJxivXbvWSbYdBO0nbiwW48SJE6yvrz/T8ewkhrYvw34boPYbMVQqFe7cuUN/fz99fX2PvL5NDNMbaf71717j3GAIq0Why+3AaVeIZ8qE3HbemI1zLOLi9akNQm4b1YZKudbkzEAIr9NG1OdgeauApmnMx3LEsiVeGe/BMHRUixuQwFDBaFIxRATRFIiJspVCtYSha1hliXY6VxKFbccp4rRbKZUrSLKMrqpouo7dovDLf/wm3/tNH3lpeoH9QBAEPB4PDoeDkZERrFZrZ37F9kaw9myL57HcOEi58qsVz/0b3qlNaCsZD4Lt+oGrV692chPPgu3EcJgGqP1EDG2ruNOnTz+mvGwTQ6FS56d/6y228mVcYR9vz8a5PBbh9akNhsMe3p5PEHBa0HW4OBLGa7cQy5Rw2yzcWNzE77Syni5SrDZ49ViUpqbjd1mZXk+Tr6lY/d3oPJqME4xtGhBRQhAkGo1K50fNpordbu9Ufko1U+egGeb3ZrdZEQyDXKnCv/gvv8dP/O2/uK9z9jLR/rw7TVrajWCbm5vMzs4eqhFsJ56WY2i7Wn8147kSw2Es13Yil8sxNTX1yODYtkrwWdCWVc/NzZHL5Q7cAPWkiGF7Y9Vefg/t1/+jX/oCr99b49JoNytbeV4Z6wZR4PxQF6IosLRVYDDk5tZKmlNWC19Y3MJplXFYFcZ7/AwEXaymikR9Dt6ajWEYcHogRMTvRFGt5FXMyoJsQVfriJKMqrYTjyqCIIIAGkJnuSCgU9fMzyGJAjpi55gRoN7UMDQVw9D4wzcm+aG/9ikcezRNfaWwV/Jxr0aw5eXlTsj/tEaw3d7raUuJp+lq3ut4bsRgGAb1ev3AlmvbX7+8vMzm5uZjg2P32yvxJKiqSjabxeVyHaoBaq+IodlsMjk5idvtfqrL9H/70n1K1QaXR7tZSRVIFWt0+1XuraW5PBrhxsImoxEv5brG6R4PXqcVj8PCRI+f6/ObuO0WPj+1Dgac7AtwcSSKXRH58oN1wMAW7AVBRDQ0DEEw8waYmkbArEx0jkfEYRUo11WaqoEgCgiChKY2zOhGEMHQMZCwW0UqFRWP00FT1fg//+sf8i//zrcf6Py9aOy3KrGzEaztNt3ulNyen9gr57SfpcQRMbTQJoPdboynddi1B8c6nU6uXr362Bf8rA1Q2WyWqakprFYr4+OHE+rsJlNuaypGR0eJRCJPfP1SqszP/M4UTU3n9GCYbLHKh4/3UFd1zvQHWUkWAHDZLdxZTnEi6uaN2QRdHhvpUp0rY93YFYl4psSJviDvLm5iVyRcdoW+kAeb081KScDQ9VYUYOYODFrnH5AwWlUHUGSRsqpjV0TKbUGorGCXdao108i0Ua9htypUaxUQBBqqhq5p/P6f3eJH/sancL6H5iYcply5m9v0ThPZ7fmJNhk87b2O/Bh2YLcb+EmDXuDRwbHtcG8nDlsiazdAbW5ucv78eaampg61n93Q7uTcj6aiWm/ybz83z1jUR4/fwzvzMRRZZDqWJVmocmWsm3ylzqsTUVTdYKTLRbJkCpIGu7zcWNjEKktcX9jEaZURBLg82o0iCbw1G8PnsLKlNkGUESUZQzPvdKMdH7QETZqmmVUHw0DVzDblWrPROb+SKFCpNBGAhmp+j7VWA5aiSNQaDdB1JBF+4hd/m5/+vu9+4nfzMgfzPg9DmLajdtsPtB1lJpNJ5ufnURSlY6T7JDxNGfnVgBd+9O1lwE5i2G1w7PNEO4HZbuIBnouPoq7rnbBzv3Lsn/ujm6xlq3jqGrFMhXpT48Mn+8kWzfLk7eUkTU0nV2lwfz3D+cEgiUKND4xH0QydHr8TvXWTnegLcmN+k4DTSl1VOd4XxGGzMZnSO5GZIYgIum4uB3S9QwwPP4RmSh0xE4taXafW1DB0HUG2mOVKQUAXRNA1DESaqrmUc7sc6JrK/3znPp+Y+CJ90VAn2bdzjf6yfQ+f93vJsvxIR23b8q3ZbHLt2rXO2LztE8ufYfDxE01aBEH4q8APtf5bAv6eYRh3DvVm+8ALJwZZllFV9ZGEXHtwrNvt3vfYtoNgZwMU0HFfehbous7169cJh8OPmMA8CV+aWuVn/+gm/QEHI9EAb07HCXocvDG9Qb2pcXmsG6/Lhtdu4dZKEkkQiGUrVBoamm5wfWGLiR4/hWqDK6PdiALYFYnRbh/XFxJU6ypz2QqCYjPlzy3Js6Gr5k2tmToE3WjlSQDD0Du5hkqtgdj2aNDNdmy7VaHaUPE67eQLTfM7bGogmAShNlXKus6vvT3Hz/7gZTKZDNPT0zSbzUfW6IdNQB8GL+N9bDYb0WiU9fV1Ll++3GkEm5ubo1ar4fF4uH37NoqiHOh49mnSsgR81DCMrCAI3wD8J3a0ZT9PPFdi2O1k7EwcPmlw7PPAbg1Qex3bQZDNZqlUKly6dOmpU6vayFfq/OfPmqQuifClBxuE3A7ODHZxYyFBxOvg3cUtdMPgRG+QekPnwyd7yZdqSILB3dUUAIokEs+W6fE7ub6wRbfPTrWpcWWsG00zWK+bYbSmA2hm5UHXQJLB0EGQEXQdXW+CYSA+zEsCoAsyVtmgoYNuQLWpAQaFilm+1HQdURKxyhLVag10HafDxq3ZVabXk1w+PszAwEBn0Mt2DUG9Xj+0Z+d7Fe1IaGcjWD6f59atWywvL/PKK6/wTd/0Tfzoj/7ofnb5VJMWwzDe3Lb925jdly8ML20p0S7pZTKZPQfHPg1PCk23N0AdVja913u28xQOh2PfpADw47/yRV6/u8zJ/pBZKTCq+JxWPnd3GVkUGPTK4LMhyzIPNjIgwOJmgdVUkVNRN3abjV6/k61CFUmARK4MQH/Qw/WFTca7fcxnGsg2h7lcEACtia6pJgHQdlkADHOZgNZsLS/M82iWLwXqDQNDb6kfZQt6w/SDRJDA0NB1gWq9iShKeJwOVF2lqen82M//Dn/4f/0g8Pigl3K5zN27dzseDE6nc89lx1cL9spltPMT//yf/3OuX7/O5z73OWZmZva726eatOzA9wJ/vN+dHwYvZSlRrVaZm5vD5/Nx5cqVQz052lWB3V77vCZA7YSqqkxNTSHLMleuXOHtt9/e92s/c2uB5c0cAG6HlXdm45zuD+KwWTAM6PY6mIyXMQw4PxBgImyWZ2eSRWRRYC1bpVBT8TmtzMRzXBwOo2o6/UE3+UodURCwyCKixYYoiGi6BqIEho4oK6CayUtd1xEk6SFBSAqoLaOW7QQhyRit1yAIeBw2CuUKNquFWq2KKInYZIlKrUGt2aTRaGIYBrFUjt/4wnW+4+OPN1gpioLNZuPkyZOPeETutux41mTdy0p07teLweVycenSpf3udj8mLeaGgvBxTGJ4bb87Pwxe+FKiXq931IAHedruRDvy2JmP2E8D1GHQJpud0ub9IJmv8CP/5XNkSjU+MNHHeroEmFHN9YUEZ/qDOO1W1jIVhsJebq/lADjRF+B41IJD1pmKlXBZJe6umn6MlbrKTCzLldEI07EcJ3oDZGoGkiSjt257QWuauQRarQ+YNm06LRJonTtDtIBae0gWtPIOwsPyZq1Vlai3ko5WRaFer+OwWahUqmCAy2Gj3lT52d/4PN/2kYu7JpiFTmTyqEfkzmVHu7W6PWPzvbrseEF9EvsxaUEQhLPALwDfYBhG+qBvchC80F6J+fl5crkcQ0NDz0QK8JAY2qKTgzRAHRTtOQq7SZv3gx/7lS8w0OUlU6pRb6rky1WORxykihUMA8oNnQcbCS4Md2GzKCwni4xEvDzYyAIwGHKjCwIXhsLky1Wq9QYzsSyyCPMJcxtFEtksN5AsCoYgIOo6uiAhieajRpTMRKOuG2ae29ABs0ohiCKGZEFvVs2lBGapUpUsoDXAMFC3P69avRYaZrISBHxuO5VaA1VVSRdK/O+/8Lv8n3/nUan0k5Z+O5cdjUbjEeu3gyw7Xmb1Yz/EcAgNw1NNWgRBGAB+C/jrhmHMHvQNDooXQgzbB8cODg4+l6rDdo3EQRug9gvDMJifnyefz+8pbX7aRfgrr9/lD6/PAfB154b58v01mpqB4bbgcdhwOuy4bAqqbpDIlkkWa5wZCBJw2VjcyjPRE2AmnkNEYCZeIFmscnGkC09F53SPh3ylTrdLIZ4rI8mOThbRoLXcakWlHQ1Dq0HKbpWpqmBTRGoNU89gQ6beigzMBKOErhrm6sIASVLQtGarOlHEbrFQrVVBFKk2mjSaTSRBoFpv8Cdv3+VvfepDjPc/FHod5Ia1WCyPTIPaaU2/3clq57LjvebFcFBi2KdJy/8BBIF/1zqnqmEYlw/3KZ6O576UaD9t2w1KsViMRqPxzPtuRwztRqXDDKaFvS/WtvrS7XbvOQX7SXkOgPurSX76N77M+eEwMxsZplaThF0WRFEiUWqSr1YY7/FjU2TcdoXekJt4vko8W+ZBLEtvwEVvwEmmXMNnk5jfquBxWJhay1BXNeLFJktbJS4Nd5EqVJEVCU3XEDF9FATDwEBAMB5qF2RJNkVTET9TG1nGun3cay1PhqMhKtUqq6kiiiyZoidZwWjWWhZvImgPRU61himccjtsFEtlRFFEkU3BVa2h8v3/96/wJ//XP+ycn8M+yXezpm87Ou227Hiv+T0eprPyaSYthmH8beBvH3jHh8RzPZvpdJq1tTWuXLnSCRHb7kvPClEUWV5eZnl5mcuXLx+KFPaSVhcKBW7cuEFfXx/Hjh07lNN0sVrnX//WG+TKNSaXNvngsSibuTIbuSr9kQC9fjO56LBaeGcuht9pQxIEZFFgOOJF1XQaqsaXHsRIFmrYZZEro2EuDnWhSALHoj6WtgoEnFZur6URxVZuwWgJmVq9DYIgtJYN4LWZpABQaHVMWuWHX3m+0sDtdOB3WlFbzi6irDzMRWAO+2k0VRwOM5wXJZlSq4zpcTmx2SxIsmnvH0vm+Sc/93Aw0vMK8dtEMDY2xuXLlzl9+jQ2m4319XWuXbvG/fv3aTQaVFuTtV4knraUeD90VsJzjhgCgQAXL1585GJ4Hg1QjUaDVCpFIBB4pglQ7fkU27/YjY0NVldXOXfu3FO/0L1s3Q3D4Af/0x/zpbtLXBzpJl+p8oWpNS4MR0gWqtxciFNvanxgvJv78RwAUb+bd+bi9IfcyCJYZJHhsJfkwha9fid3YyUQSkR9TsoNDb/LzkSPSG/Awe31CkVNxMAM/zGMlnbBPLaxsIf5ZAmnbJBrHWOyYN40QmuJIQqQLNVJFGq8NhbiS/fMBOlIxIfH4uPGTKt61iKJasMkd4fNSqWi4fW6KZaqaJppwmO1KCAKfPbGfX7ls9f4K5+8+sLW/uWmTrwisFa2kq9BbC1DOp3hDx+8joRBf5eX0d4uzo/143U9X0Xt14JJC7yApcTOC0GW5WcihnYvhc/nIxqNPtOFtv2Jv13avNP4dT+v346f+h9folCu0dR0Hqxtcazbi2HAu4ubfOzMEJVGknpTI1tpoIgiF0ciPFg3w/mI18FbswnCHjuyJNLrd9DtdRDLVjjVF2BqPUvQaeXmUhIRiOWrlHVra6VgmCVKzGNy22WKDQOvw4IkCgyGfRTqGUCn0OqUyhXMZi2fXSbd6sdQDYF2M6bPaWVqdROHVaFSbxL2uognze0EUaRcrSNJEpWa2V6vyFKnfb1Wb+KwWfn0r3+e8d4IE73+5xLiz8Qy3Frc4u25OJlSjVtLWxyL+ohny4xGvMwn8vS4Ze7Fk0z0+Pnv78YxjAf0+qxoBrx2rJvL47188sIYTtvhpp238dVMDK2cRXu8mBdYNgzj47tt+1KUj4dZSrTbsLe2trh48SKxWOyZI4/24Jr2+PpIJPKYtHkuluEz785zezFBtdGk3lSRBIHTg2ECYpXR8fojPg7/7fO3+c+fuUlD1TjZ60OUZe6sZvnA8T7KdZUv3lsh7HVycTDAu6s5AMajAYYjHuKZMpt580neE3Tz5kzc7Ji0WTjZ7STothP21BjscnN9Mcml4S7eXS0g2uTWPAjBFCTpBoYAx3v8LCRLeGwyDkWkoWqU6yoXB/wkchJrmTK6qAA1XIpAu95VqTU4M9DF5EoS3TD9Hi8NdpPKl1iKpzg+0M30agKb1Uqj0UDTNTRNBUFAViyoqka90UBAoFqHSqPBD/7sb/Bv/u434bUcnMhrDZU3Z2K8u7jJu0tb2C0yDVVHkUTW0yXODIS4ubjF1dEI1+YTnOj1c28jS9BtRzcMTg6ECHscJLIlkoUKfzoV57+/s8z4Z24Rcln5pssjfMOV4zidjqcfzA7sJ/m4VzPgVxqtnMV/EARBAT4P/Ju9tn1pyseDYGcDlCiKz9x6DSYxtE06trs3Ta2m+I9/cpPbS1uUag3KtQY2RaRaVzF0HYsscG85Qa3e5Be+OMeZoTB//5s+yNJmlh/5pc9wZjDM/bUUFoulRRpZbi3E+cDxfsBgq1DGbZM5NxBgOp5nLpEhU6xxdrALq0UhX6lTrpnkebI/xLtLSXx2mZlkHAwQRAG3TSFbriMoFjB09FYuQQDcdoVC3cBpkWg2muQqDYo11TR3NaCm6uSrGid6fCQy5pLBZbdA1swVlOtNiuU6ggCxVA6ATKVB2OdkKZ7C4zJvoJGeIAtrcWwWK6VyGUGUWr0TDWRJwm6zobZGxRWrNb7v536PH/zmK0xMTDz1u8mUarw9G+OduQTJfIWGprGaLNATcFGsNvE7rZTrTSaifoq1Bh892Uu1rvKBY1E0TWOky0nE7+Gt2RijES+vr66h6QYXRrqo1lUmeoPE0kXeWsyQKjf5v//oDp+YCPEtl4cZ7Ing9/v3FTU+bRTeV0nL9aeBzxuG8ft7bfBSlI8HIYZ2A9TIyEjHwQmePVfRnn60srLSkWT/yc0F/sP/vM1aqki2XMdpkSjWmlhEg3xVRZEEFFlEEKDS0LHKAg1V5ctTK7x5f5V6vUF/l4e7K1u8drKfmwub1Joar0z0gyDwxXsrXByLIokSNxYSQJFPnhvm+oI56q6pGUzOJzjRG8DlsNAXdJGrmGF7j9fG/c0y5wZD3FlNc6LXz4PNCorVhqbpCLLccWAajXjRNI1YtkyxrlJrTbTWWjkHiyxSrKuspCsMBxxky6Zyso1iTWOrrHJpNMrNedNbcylZQGqal8fMegpZEnHbrfjdTvLlKookEfC62UxlQBAQZRlV1zF0g3KlisWioGo6P/2bb3FrrcC/+J4/j836UGtSbajcX0txa2mT1WSeVKFGQ9VpahpWRebuSpLRiI+3Z+KcHgjyxQfrDIQ8TK6kEAXwOm0kcmUujYS5uZhkOOjgrdk4XoeVoNtBwO0w29JnYuiGwZmBEOuZEpdGu5ElgcWtIm+vlvjMg+t83Yluvm7cS8Ble8R/YbcIeD8zJd6rSwkAQRC+BxgEvv9J2730JqonYa8GqPZ+DjJibjtUVeXevXtomsbJkye5vpDiZ373bTbSZu9BQzNw2WSKNQ2HRULVdDCa2GWZQlVFEkASTA+DhqabAqCmChisbeXwe+zcWd7izFCE63MxitUaHqeZ9Lq/ssXZ4Shuu0K9qXFraQtZFPnQiV7emI4DYLcpnd4HVTe4PBKiWqky2OVGlgQiXjs+u4KsWNANo9NFrUgiEZ+dQrnGQrJE2G1WDoqt6KOtWpRa34vPYWElU2Mg5Oq0UdsUia2iuZypaUJHm2u3yHg8XojnKFTqHIv4uLuwzkRfF/F0nrMjUVY3MwiiwNmRPjKlKoVKjaZmYJUUBFHAEEWaus4fX5/m83cW6Y8EGY2GsNktFKsNNB1U3aDW1JBEkWSxStjr4N5qipGIl8mVJNGAk8WtAhIgiwJ2q8zp/iDpYo2JqI9qU+NUr6+zXB2L+rk2n8AiiwRcNrxOKxeGwmzlTPm5ZujcnNuiN+BioMvD7UKFP70f58ZKlo+d7uc7LoeIxWLMzMxgt9s7ZdF2W/VXsxGsIAiXgH8CfNgwjCeG3y88YnjSQNo29tMAddilRFvaPDAwQLKs8v2/9CVW0xU03UDDXM+6bTKVuo5dEqipKoYBDqtMoa5hUUQa1RqqKJpaIl03/4BpoyYYZItVRKq8PVXmI+fHmI1luL+W4pXjfQhIvDO7QZfHxsmeLt5ZTAJQqamc6gugG3Rkz267lVvLSTz2IFObFQZCbm4upekJOHl7KY9osXTeUwdO9vqYjeVp6qacKVM2o41sxSxNlltzKNteDm67hXiuissmI7YMYrt9DpY3ze0dVoXzI1FuzscYifi4v542eyYqNcJdIWY2UqQKLTKt18kWK1wa78dus3JnYZ1o0Et/OEBT00nmShSqdRRZwetxEPJ5cDut5MsVNvOlVqkVbFaFYqXBYiLLmeFuVpN5Jnr9VOoqF4a6sFkVCpUGXoeFm0tJgi4bb8/GUXUDVfMxl8hxbiDA1EaJiM/0rbgy1o1Nlvjy9DpWWWRqLc1WvsKl0QiiINATcNETcPHl++s4rQpXR6PcXkzwX79wjwfrGV451sPf+rrzCLo5V3R2dpZ6vY7X66VWqz1RDfseX0p8PxAAvtB6iN9o6SMew3Mnhp0lvadVEfbbAHWYpURbbHVs4gR/MLnBH76zTK6uMd4bpNpQKVQbrKYKyLJCtdxkOORiM1fBIuqtlmOBZqNpti9rGqCD0FIZiiICBrpmtMxMBAQ0ZlbijPZ1k8xXSGbLRPxuwKDWUJnbzHF5tJvNfIU7y2ai7+qxKCf7Aui6zlSrUtHuU+jyOlhNl/HarcRLemfpYBgCExEHd1YzhFxWksU6IZeVVKmOTRE7hJCrmBFW0+zHxqGYhLtZqHO8y4ooVPE6HmbpDSBRqCOLIk6rQq2pcmU0yjsPltjKFXHbraylCvSEfMRyFfpCXjRV5c2763gcVrr9bpK5AmtbeUJeF0MRP4IAdU1gMZbEbrPSE/JRUzV8LhflhopaNVjZynKsN0il1qA34KJUbTK1nuLCcIQv3V+nL+hiaj1DU9MZj/pw2hQiPifZUp3BoIv1jElWA10ers8n8NjNyCric3FmIMB6qkS2VCWWLRPLlBjr9lFtaJwe6MKmSHzh3io2i8wnzw5zcz7OtdkYk0tbfPzcIH/ptZOPtFXPzs6ysLDA6upqZ9mxfWzeYZYS+zBpEVq//xRQAb7HMIx3D/QmgGEYf2u/235F/acO0gB1EGLYLm0WAwP81B9MsrhVQJEkHFaRN6ZjXBwJM72R4epYhHfmElwc7uLdhQRWWcJqVdBpEnTKZAqm6g9RhGbT7EYUJZMMDL3lhiRiGDqiILCZyrCZyvGhC8fZzFd4a2aNy2M9aJrG7dUMmfkYX3d2mHJNpdZsMr2RpVBtcHU8isdh5XiPn2pDZTxkw9ANLg+HuJcoI0iiKVMwdMJuK3VVxzAg4LSQLNbxORRSpToBp5VYrookQr5qRgKVlgZBbombLJLAg60a5weCKNsET8VKnXiuyoWRbvJlc3kRz1cYiviZXU9yebyX6w+W6I8EmF6OE/b7WE9mMICxvjCJdJ5YukBv0E3I5yBTKJHIVegO+RjvDaEoMqou4rYrXJ9b58JoD2upIgNdPhRJJF2skK00WE8XOTsYplRtcGWsG6sikywkON0f5NZSElEQyFcabGTKXBmLkItlON3nRRIF+oIuevwurs0nEAWBt2YTlGtNPjQRpaHpKKL54Lq3ak7+8josXBrtplJr8Pq9FRRZ4mOnB7i9vMnrUyt84e4KP/99f6HTVu1yuRgaGkJRlEfG5tntdhYWFg5sBNu6pp9m0vINwHjrzyvAv+cFmrTAc1Y+7he6rvPgwQPi8ThXrlzZV1fkfpcSjUaDmzdvYhgGt3MW/r9/codkyTQ1nU4UcFoVXjnWTa5cZ7zbx8xGjqjPiaYbvHKsh1ePR9nMmzMXwn43drsNt01GNFQESW6JiQREsWUnL4odgZGm60iiKVC+M7NI0GWu+TOlGuV6E49dYSji5Qv3VmmoDY532SjVGiiSyGw8R7JQpdLQuLmUQpYk3l1OsVGoU1ONlmRBwGsV2SzU8drNRJ7DYnK702r+7W79HXBYOmYs+Vbk0P5BsJWLuBMrdfIPALFMEYBUqcnqVg6A9VSB/rCpMi20iCaVLzMcDSIrEslciYn+CNWGSixdYCQaoqcryOpWnkSmyPFeP1GfnbmNJKvJPJV6jWvTq5wbCpszOt12Gk2VGwtxfC4rAZeVswMhkoUK0xsZGqrGnz3YwDAMrIrE1bFuXjseZStfwSKLLG7lyVebSKLI23MJCtUm8VyFy6MRLo2EaTQ1nFaZe2tprs8n6PI4EUWRy6Pd9AVdzCdy3FtNgiBwYbQbt11haj2Fpht8+GQ/P/QXP/jI9dXOMbTH5p04cYIrV64wMjLSyU18wzd8A9/3fd+3LyXmtWvXoGXSYhhGA2ibtGzHtwC/bJh4G/AJghB96s6fAc+dGPZaCrSXF9VqlevXr2Oz2Th//vy+uyL3EzEUCgWuX79OT18fv3xziy89iCFKEtW6SqXeZDTs5p3FFPWmzmw8h9dhJV+p0xd0cWc5ydRqipvzm0z0hfjoqT4erKWo1JsEXFZGIj7z80kygq61ylYt1aEooRsGotiaYm3olMpV3pmc5vxQCFE0b3xFhJ6AG90waDR1VgoaQZeVK8MBMHTcVpG7qykkQSBeaCBKJglIcitC0XTGwub6VpEedkVu/7/NYi4X3Lb2eTXItiodbdmz125p/Uagqov4nVbCHjvFmkkgdquFU4MPm6HadDy7nqQn5MXtsJEuVJhdMxOpXpeDmZUEQa+TLr+b+Y0txvvCXJoYoNQwuLGwRdBtQ23Uub+c4ESvj1q9gctqYTGRZS6W4uOnB1hNFphc3sKiyOi6wdXxbpqtZdWplnbhxsIm85sFJEnk1eM9jER8DAYcLCXNMuzxHj9rqSKzsRzvzCdQFIlXjvUwFPbisSuspgrMx3PUVI25RJ4r4z1cGY/yYN0kjoEuH8NhHwLw1z9+lrHoowOJdks+tt2c/v7f//v4/X7efvttvvu7v3tfZjQbGxvwuEnLzjHuuxm57H/U+yHwUiKG9tM+mUzy7rvvcuzYMYaHhw+kYnxaEnNjY4OpqSlOnznLv399kdVUCVEUmI3nqKs6q+kiW8U6p3rMG+vVCVNFeWYgSKF145zqD1KoNpjZSLOyVeDyWBS55VEwv1XidH8Qj11pT2lAN1oya0M3tQW63rLcaGUDDJ3JmSX0Rg1FEszE2fQ65wcCXByPkinVSJdqLGdq5CoNzg91Mx7xcGnAg1s2UFo9CIamIrfbqFuft503aJck22gThKMVOXjtlg4htJcUdsvDC3stXaa3y0vE+1A67HVYWMtVscgSA11e3plZJxIwo7qB7hDJXJHekI98ucqJ4ShL8ZRZNu0N09Q0vG4XGgLxbJGVrRxnhqM0VN0sL473YlEsCIbBrcUEfpvEuYEgn5tcQdc0PnKynzvLSTbzZov6/fU0Ez0+nFYFn9PK2cEQsWzZJPdYjuvzm3jsFgRB5PJoBEEQ8DutTPT4qNRVREHg2nyCOyspTvZ30RfycGYgRKnaoFRrkipUeXs2wenBMB892c+NxQTX5hP8jU+c4+NnBh+7zp4mcNJ1Hbvdzmuvvbav63sPg5mdP9y3kcvzwkshBkmSmJube6YGqHafw07ous7U1BSpVIorV67ws396n1i6xP2NDCvJIid6/FgVmZO9QeL5GmBwY3GLpqZzfWETRZaYiecYj/qRJRGXVeH8cJilrTw3Fja5Mt5NrpXln98qMtZtEktb5KLrestXcacc3Px/s9lkbnkNq2EKp3QDFrYKZItVzg91cX4oTCxbxmWTub2S4kEsz3q+wVpZp6Hq5mwIAzxW86tq9zy0E4vtRGNDe/TcWFoE4XM8jMjMYbYPowyrLJAp15mKFQl6Hj7dGqrGVqHGudEo3X5zmTUUDQEgCiLxdIHVpOkLYVEUkrkSxwe6cdqs3J7bwO2wUanVWd3KMRYNUK3VWdnMcnWiH80wqGkGk6spLo9GkS0WYrkqg0EHpXqT2Y0UQafCpVYOCMwI5s+mY5SqDWyKzKWRMFfGzPMmAJuFGvnWZ3tn3tSSlBsaV8e7uTQSoVxXsVskpjcy3FrawmKRyLfMdbt9DlTNJK2bS5v0Bz182yvH+L5PXdz1OnxSJ+dhXKRaJkBPM2nZl5HL88QLX0rU63WKxSK6rh94LNx27LaUqNVqXL9+HafTydmzZ/mPn73Hn06uUKg1Od0fIlOqMb9ZYC1d5PrCJlGvnQfxgjl2fsU0Ws2UTPWf32nljekNBEnEgoYgmHXz5c08QbcTr9PKsaiH2ViObr8bVTPo9rlazketbsRt14UkiqYde+t85Asl1hNbjEW9nOzvYmYjw92VJLWGxpWRMJdHu/E6LJzs8bFVbAmQDHNAjCgKlJqCaQqbryEA8ZyZB2n3O7QJoh1JtOfUtnMP8LCcqbeijC73w++i1ITRbh8AiawZli+mymSL5vvMrKdxWC0sxdOcGo4STxeY6I8wu76FzSLTF/bz+u05ekJmInF6dZPeoBtJEpjfSHL1+ACVuspSIsdWtoDfZWMulqI36GErX2UjXeETpwdI5Ksk8lXKlQoOReB4t5t0wTyGYz0B3p5PcHNxi3ylyVi3l4+d6sMii+Y5yZrbneoPcn89w53lFHdWUngcFj54rIfhiJcuj53lrQK5ch3VMHh7Nk5/yMOZgS4cVplsucY/+MbLrVzR43ia8/VBnbFbow3GBUEYFgTBgmnS8ns7Nvs94G8IJj4A5A3DiO/7TQ6BF1qVaDdAuVwu+vv7n6kBamfE0Habbkubv3BvjT+bjqHIMsVqg3eXt/jgeJRCtUHE56BYaSALOj6HTE/QS7HaxGGRmItnEYD1tNlc1OWQubaY4nhvkJDLxpenVgC4MBxhdi1GsaYSDboRBKjWavR1eVlP5hEFEb0150nAQFObDxOmgtmkpDVVZueXcblceK12JgYiXF/Ywuu00lB1Ko0mMVE2S5+SjCiJ6AhMdHuZ3iwxGnazkCwT8VgpNzSCDhGLaODzyThFlXO9LtxWmcuDftw2hZEuF/ZWidLrUMiXzcin2jAJ1mN7GE3kKw1qukiP38lG61xoOvg9LthIka/U+djpIT5/c5ruQI+5T5eD2fUtPnJmlBszq8iiSF/Yz625NTwOGyGPk8nlBBfHB2mqOveWE5wf6+XWYoLTQ93IsoXrMxucH+4mnivxxkyMU/0hqg2N5UyFWlMj4HJQrVeZ6LKjNkwSH+pyMxNrRywy67kaZwf8SJJCxGun2jRJ8sxAiBuLm1hlkVtLSbLlOlfHIuQqdUa7zTwHgN9l4wtTa4iCwL/+mx+jN3i48XKHGVHQijyfZtLyR5ilynnMcuW+y46HxQshhp0NUEtLS8+tAWr7vtvS5uWtAj/wS69zdrALr92C1SJh4GVyNYXbpjC9kSHgtpEp1hAFiOXq5Ct1zvQH2MiU+MB4N6qqkimUkVsh+Fwsi9btYbjbx1IiB+gMdPm4v55iLpbm46cG+dytWfzOAKIgmNZomgG6jt5ah+ptGzXMuZGiaJJboVBEkKrcrJSRJYViqYmqGUiKgq6pSIqCoau4HRZGu7147RZEXARcFgrlKmGnzN1sCY/FwXK6iiQIGILZFxF0SKQrGhMRF4vJCh8cC3FhMEi2XO8QQ7u6YNlWqoznKpTrKh8YDnSIYTjs4cFGCq/TRr5co1xTEQS4t5TA73Ywu57klRND5Ct1cqUqZ0d7Wd3M0GiqnB/rY2o5zqmBCIpF5p3pdS4d6+fd+Q1OD0fNLkdRQtV17i0leO3MMF+8v8bUapIPHu/H77bz7tIWKgKpUgO71SzLnox6sIoGK0DYbeXBurncUDWDu2tJTvcHub+eJep3YlEkLo5EsCsSb0zHsCvmgyBbrnNlNMLkaoa+kAeXXeF0f4iIz8E3Xh596rW9FxqNxqEi4n2YtBjA9x14x8+A576UUFWV27dvd7wY7Xb7c/FkaAun7ty5Q7Va5cqVK9hsNupNjX/zBzc41R/k2lwcSTJr136XjVKtSW/QhaobDIU8qLrBsbCLfKVOj9/JvbXWcqJY4friFv0hD36PORr9/HCY2Y0MqWKNV4/38e58zJwSNRTm6rFevjy1RH/Yx2Iiw+WJAU4PR+kPuTt+D+3oxjCMljOrWd40c5NmcrLRUKnX6zQbDbOy0QrxNU3H0HU0Xefm4hbxXIWp9TSVRpOtQhWrbEYBvlZ1IeCytq0YqLYaWdsiqUyuwO31PAGnzHCXKbxJtZYfnfKly9JZiqiGyKVRsxImCVCqNZgY6Ga428+1mTXOjPTS1HSO9Xcz0hOk1lC5vxLH47AhiSLxdJ6JgQiZQpnRaABFVnh3Zo2I38V6Mocii9gtClOrKa7NrHNhJMLxgS6+OLXClbFuwj4HNxYS3FxI8MFjPZ3kasTvotbUWM/VuL9p2vAfi/oY63ISdslMx/PAw2ljIY+dN2cT3FlOMp/I43Pa+OBED+NRP6f7gh0H76jfyVszcZZTBX7suz70TNfoe1z1eCA8d2JIJpNEo1FOnDjRSdI8DxenUqnUaWk9efJkZ98/9dvX+ON3l8mX64xGvMiiyGsTUTTd4OpYhGypzkSPj3SpxljYgyjAK+PdnOz147DI9PhszLTMU3xOO+/MJRjvCdBoHW+x2qDaaDIY9gGwkSlTrtRoqhreVj+EpussrCcoV01NQju5Z7oqmRoHwTBa06MN03oNQDez5oIgYqgNaE2CAhgOmuVDRRJZSpr6gnY5sf3MalcXvK0Eo00RqbSWCQ3NPAaH0ySDWkNjNVvjVMTeeeq1/R7DnocViVpTZSpWZCjsZS1l3mx3VpJEvM7Wfs3tCtU68+tJdKDR1Dg+2M395TguuxWPw0bQ6yJfabCVK9HUNAa6vGxmi7wyMcBsLMOJPjOZORdLY1FkDAOuzcY4PRjuHF+p1mRpK2eG/638yESPn7qqUak3ubOWZT5ZJuK2Mxxyc3nQT6Nex20VKVfMJO2ZgSCb+QrVRpNby0muLWxhtylkKk3ODoUBgUsj3fyzb7lCt//JN/XTLOTeL+5N8AKIoaen55GuSHj2zsjNzU3u3LnTGV/exutTa9xe3uJDE1Fm4hm8Titvzcapq+aTFmBhM4/XYWVhM48sCUxuFJhcTvL2XIJ6U6fHY+XsYBc+h4W7K+ZrrLLEaqrE8b4gx3sDvLsQp64Z+J1WQi4r2XIdqyIxtbLJR8+OMLMS58RglFShzFjUR0PV6Av7zaSY2LJfa8+Q1FvnQTNJQFNVkzQwm50cksG5gYCpXQBGIh7zBhboSH/bbkrtnE1b5OR3Pgxj26rH9s3vdNjRESjpCn6XjX6PTDJv7s8iPgyPE7kKDU3HaXdQblcxBAGtdanMrKeY6I8gCQJD0SBTS3EifjfZliP2yaEooiQxuRjHbbcSyxQ5O9zLnYUNekMeUoUqiixyY26dc8MRTgyEmY+nGQp76fa7+NLUOsNhL2cGuri3lsIwtV0sbOY40x9AFAUkAU4PhCjWmsiiwEqmymKyhKBYmE9X8bmdFOo642EXRqPGRMTJ2T4vGAZBl427K6aASRLg+sImTV3nu149/tTr8KvZpOWgeCkCp8MSg2EYzM7Osr6+/lhzVapY5Z/+8hfZzJW5vrhFr9/FraUkvX4HDzbShN027q2mkUWBpS1zzdx+kp/sC1CqNVEkgalEicmVFGcHwxzrMcUsqqaRK9dY2MzT5TW9CBLZEqPRADMbGTZSBc6P9eGwKuSKZerNJlPLcWyKRKZiag6O9YXBUOnv8mHompmtbi8rMBCldjQhoKsNnFYZn8tUQk6vbmGoTaJeO167WUaM+hydaKDjvKS126ofFTXZ5IeRQ3uJ0F4aexwWtsoqGxUY6PJiU0RUtWXyahU75VCHTWasP4IgwIn+EDfm45wcNAm/O+jl3nICBFPYNdwTYm59i9HeLqxWC+88WOHUcJTZjRRuhxVV02iqGsf7I0yvJ+kPmSXfSq3BRqZEoVKnWKky3O1H1XTm4lmcNgsXhsIIgsBG1uyM1A14Z24Tr9OGy2bhVF+As4NdFOsaiiQw14r8wl4H6VIdSVGYjFdYSNVYTFfJVpuEHSJ+p8KVkRCiKPDKeDc/8ZdeRRSfnhjf77CZ9wNeio6hPdj2IGhLmwVB4OLFix2FZDvM/JnfvkbE62Ag5MFrtxD22tENnW6/2YQzHPZSqTe5MBRCEuCVsQhWReJ42EGuYIbIpwdDLREMzMTSTK6m+NCJ3k65biTi4+3pdc6NdCOJAolskVMD5nyM6zMbXBrt4c5CjPFuP8Vqg/PjA2xmi3z8whifu/mA7qCXRqOBKAiM9wYxDB2Py4FVkZFFEUPTCLjNMP50nx9na2lwvD/EfLJCOlvAYRGRRaET7lskkWSxbbDy6Dm1dSoQDxuj2i3Y7TKmtbWNzyZzK1Ym4HHhbl3MvYGHT7tcLs/kaprzI1HqLZfvqmbgddi4t5xgtLeLe8tx+sN+lhMZ/C47/ZEAX56cZygSIFeq0lA1xqIB7q8k+MjZMb58d4meoIdb8xucGjBNauyKhEUWsVpk5mMZRsJegi4z8XhzcZNXJ6LYWpoRuUWALpvClx7EmFrP0tR0+v02Xp3oZiTiY6LHx0bLjKadizk3GCJdqhN0W1nM1Inn66SKVW4uJfHJKrZGnnw+/1TJ/X7cm44ihgPgoBFDPp/n+vXrDAwMMD4+/sg0I8Mw+JUvP+DX35rFIktcm0/gd1l5dylJ1O/k9nISp1XudCpmSnUSuQqGYfDuUpJSrcFCqs5AyI1dkQm5bZwZCLHZ0gWY8xlFTvSHsEjmDTW9nuajpwdZSxW4u5rm1FCEC6NR4lkzEonna9gtCjPrST54YpD5dbO1ujvgJZ4pcH68l6V4Gp/DyvnhbpqNBkNhU0moNxsMdnm5u5qiVqsScFlNPwhAMwzemlmn16t0SovdPnsn0ZhtrbvV1gXdFjW5WtuKotBZUlRb5i3t56LHZt408UKd+XSVy6MRvPaHS5F01dzncrJMvWYS0cpWnvNjUTLFCk6HzRy1F/ShGwYTAxFuz2+gyBJhv5v5jSQDXV7WU3muHh8kV6nT1HTCHjMCczusLCRyzMcznB4IE/V7SRWqbGZLnB3qotHyiyhUmyxu5bk6GqHe+gztfEfU7+Teeoa1nNn89e5SErfNSiJXpT/oJlmoMRLxIohwfqiLcwNdnB0M8fFTvXR53XzsZB8/8de+DpfLRSwW4/r169y7d49YLEat9Zm342vFIRpeUNv1ThzGrOXChQs4HI968kmSxFIiy2+8NcPl0TCiIHJ5JIzdqnB1zIrHZiHiceBxWpmL5xjq8nBvLY1dkcxGGcBhUYAmTqvCF++vI4sCpwdC9AZc1Jsqk8umKtLvsuFqJfVkUWAulibqdxHPlky/gXSWzVyZc62o4QMnBlE1FV3XWYylODHYzb3FGC67hVpDpalpHO8L8KXJec6P93N7Ic7ZsT7uLm1yaaKf1XtrVOpNTvaHWEjkALNcOLdVZGkrj8uqcHnQj2oIrGWqyKJAukUMbV1C+65v5xy8NplczfxdO3HZzvLblZZ02iKRLjVIlxp8YCjA6f4g+XKN1aR5DGNRH/dWthiO+KjU6tyYi+F3Wrm7lGA0GiSZK+F1monSXKnKpYl+HqzEsVlk3HYLfo9CQze4sxBjrDfE7YUY58Z6mV5Pc6o/xI2FBKlCme6gDwDd0Lm1bPo5rmdKTK2Z5UhEgelYlpGIB0UWGe5yE/I6iOcqhF0Ks62qRLsBLuJ1cGNxi7MDQW4uJuny2HiwnkbTdLp9TtYzJf71X/8wfrcD3A7C4fCu8zV9Ph/BYBCv1/s1lWN4KW3X+7F303Wd+/fvo2na3tOqBZF//Mtf4s5KkqtjUa7NJ7g0EuFLDzYY6vJwI7WJIgk4bRYypRrBYRtRn4OoS0BFRhdEZlp1b2vrxugNuHj93hqKJPKx03382dQqTU3HaZW4PhfnlYk+0DXenl6jL+jGbpEQtCZBl5XNXLnV5WeOhrs9u06wVe60Wy2Uaw1eOTHEnYV1PnhyiHsLG0gCFIpmqFuu1DgxEOZzt+aZGIwyG8ugNRtMdHu4s54n4HHAllmRiOeqpNezvHqsh5EuF9WmRjxnPtXaUud2ubPdSu1xWMjVzJxBtvxo5NDOt0S9Nha2zNevZErEc1U+Oh6iWKmRLdfIlapUGyrFpsJQyMP1TIGeqJ9cs0S8JtJoaCCKaI0Kdo+f+c0SxWqdyxOD1Ot1VrcKBFpPeLvFJFqf08691RQ35jY4N9qDIEpcm93g6rFeEESuL2xybT7Ox04PYreWWUoWWE2Z58zrsPHWbAJJENARONkbwEadgbAfqyKSLtU5FvVSrjcZDntw2mSO9/jp9jnIV+p4HVbKtQYfOBblmy6PPHp57TJfM5fLkUqlWFhY6FzLlUoFu93+2EPwvezedFC8tKXEk3IM7Y5Lt9vN2bNn92Tl35vcRNM0PnaqDwE4OxCk2jRzBD6nDd0wWu28NfqDLiZXksSzZTZLOpNrORwWBYss8upEN1pLUxBpJRdlSeCdmQ28ThsfnOjlztImAHPxTMcfcT1dZCLiZmYjzXQ8x/H+MPFMkY+dH+PPJuc5N9bHejLH2dFeJhfW6fK5KFZrDHT5UDWdQrXB6ZFeFhNZ+oMuVjczyKgYmE8bMGgKCrcWE1weDlFs3fABp410S7pdUzWWEhnGupydhql2MnKnlZvT8rAVu12daJNIO3JoJyydFolEy7E6W22gSwofOt7DQqve73dYWM1UkRweFrMqFpvNLF2Ksjk/QrHSRKLU1JGcPmY2i9xbTTPaE2AxnubMcDd3l+J89OwIX5pa4fK42Ryoaxpbraf8zfk4VsU8Zpsic2spyfJWno+e6O0QWdvP8tRAkJVUkfnNHNPJGjeWkpTqKtOxHF6HjQexHBZZ5K3ZTTKlGm/OxpmJ5biznOT2corv/cSpPa/HNiRJIhgMcuzYMa5cuUJPTw+iKLKwsMD169eZmZkhmUx2ru1SqXQgL4btEAQhIAjCnwqCMNf6+7GGIkEQ+gVB+IIgCA8EQZgSBOEHDvVm+8BXPMeQTqc7HZeDg4N7yqZvLiT41RvrPNjIsLJV5J25OHarwv21FOPdPnIlc8ajRRY53R+ky2X6EZzs87ORrSCLAgubOcoNDVUzmFxJMRj2IMsiLqvM6YEQhWqDRK5Mo6ly9VgvgiAwGvby5vQ6V8Z78doVZhMFrhwfwDDMG/HqRD/XHizjsCosxdPIkoimG6iazumhHtLZAgIwvRLHophTnQBCPjcXxvs7If5aqsD5Ph+Lm2ZIbGb9zc/esy0pWKg20XSDcq1Jt1vhTK+v00C108qtXa3YnozMtCKHtgBKkcw36fM7OpWLtVSJYq2JqsNITxfHegKky3WSVQMECUEUUXUBBMk8RlEy51LoOogKkihTbuiIVju3llPIskS11qCvy0e6bDay3V2K0xNwU9fMsqHHbuHcSDd/9mCdC8Nhzg5FKFQb6IZBplwnli3xyngYp0Um4LJ1PuOp/iCVpk6Xx8a9tQwCsNZKPraJc6jLQ9Tn5OpYmLGoj3/0jRcYiRx8WLEkSfj9fs6cOcPly5eJRCIUCgVu377Npz/9ad566y02NzcP62b+w8DnDMMYBz7X+v9OqMA/NgzjBPAB4PsEQTh5mDd7Gl5KuXK3pYRhGCwtLbGwsMClS5ee2HFZqNT58V/7MuNhJx+eiCIIBj1+J7eXTd2BLIosJwuIgsCXpzdYS+WYXM/Q43cQ9jq4NBLm8miEdLGGJMBc3NTZR7wO3pyJIYgCdkXCbpHoDbi4vbTJO7NxPnCsl9kNUx15Yz7Oyb4AlYbK1MoWfSEvTpsFAYNsqcrZsX42s0UujPcztRTnw2dHmV2Lk8yV8DhNw9bTwz3cb2XyNU1jZTPNUiLLWMRMRFqtNhytykTYpRDbSuO1W3Bsc1dOtJ6ukiiwmipSqFS5MhzEpkgUWrLH9li61n2B09ouZ8qdJ26hlXtotAjCbTOf1H1+R6fZKpmvsLhZIF6ok6+3v1uh1SgEGFpL1CmYU7RlBUkU0NoTqAQBQ5QwRIXFzRwuReTe0ibnBk1jl5Gon4V4lvVUgd6AKYgCuLVo3lxj3V7CXjtT62lTz2AI3FzaQpbMpPLp/iBum4XjXTbO9oe4ONTFR0/00hdw8dpEN03d4HiPn1vLKapNjbfnNtnKV/krrz1ds7AbtucYRFHE5/MxOjrK5cuX+c7v/E4sFguf+cxnOH/+PLdv3z7o7r8F+K+tf/9X4Ft3bmAYRrxt6WYYRhF4wAvyZXghEcNOcti5lNgum758+fJTDS3+P//ti9xbTVGoNnljJs5iIkdvwMWxbh8fP9WPquvYFJHVlLkeHwi6aGoGiiTxhal1bixukipVGe32cbbHic0iIwqwkjSrCqPdPr50fx2Xzcrx3kAnzK42GngdVrx2mbNDXdxc3GIg6KZSb9Id9LK2mebB6hYeh43ptS2cNgupQplXjg9QrzfYSOY4PdzD1HIMu1Wh0XK57g/7WNnMEXSYN6NFUbBbFe6tJTk9YCoCw0E/2VKdkE0gmzOjCJ9DodSKMNo3tMdu4dp8goBNoj9gLosa7TmUrdJau4wZaCVTJYFOUrLdUt6RHnvMykSv32HqPwSBStPodJGKpnazNfRWQpAVDN1oVYyg9dbm/wWp83MEifmtEhgai4kMPoeFe8ubnO43y782iwWrLOGwypwa6OLm4iaLiRxnBkKE3HZkUWQuYZ6HoS4vsWyZUq3Jl6ZjzKdqvLuc5PriFrFciRuLWxRrTWZiORxWGbdN4WSvn9P9If7lX/5gp2R7UDypXNnT00MwGOQnfuInuH37NmfOnDno7iPtjsnW30+cWiMIwhBwAXjnoG+0H7xUoxYw12HXrl3r2GI9bYTZL33uDl++v8qVsQhRrynnPTvYxfWFBPdW0yxvFZjZyHC6L4BdVLk0GEBDAoyOhdlEj5+5eI75RI54oUEsU+K1E730BV3YFIlyq6QnSyKv31vj9GCYy2MRbi8mWE2XCPk81JsqDVWjUFMZiQbYSOU4MdhNoVLj5FCUXKnKhfF+XDaFUqXG/eUENouMJIlUag1ODfcwtRRnpCdEOlukVK2xma8iiQJTy2aSs1RtcHt+nbDXTrqlVZjfzBMO+AAIbFM2Zlrt0JbWRV5TVe6spjnV48VllZFFoVPWtGyr/4PZbq2IAmG3FbsicarXNEK5PNyF12HlyphpGGO1KmYTmGGYQ38wm8KssoRDMVudaYm3kJRW5KAhiJJJCoYGrWlZiCKqYSCJMoVylUvH+slVVe6sJBmPuIil8zxYSxF22TqDd0VR4N2lJKlChdeORxnu8hB0WVnYNAm9/f0OB21ky3XGu72spoqc7PWjSBKvHY+yWajS5XXw+v0Yw2E3V0YfOlMdFPupSjidpnXcbtt98pOf5PTp04/9EQRhp5XbEyEIggv4TeAfGoZROOjn2A9eSlWiHUG0zV/PnDmzryTNrcUE//b3r5GvNBAEgXdXMvgdFpw200zFIotcm9vEIgnMxbPkayqRoJ+p5QSjrTXkpeFwR9V2si/A/TVT3xDPlpmLZzk32IVVlujy1OgNuIhlitxbTTIatHGy18f9jRx+l5W1ZJ6o30UyX+a0P8zb99NkC5WOYOfieB9buQLLG0mOD0QoVetcPj7Anfl1fC4HlVoDp81Ct9fBmw9WODfWx+RigvPHBphcjKO2Eof1psZg0MWNlQwg4HVYeXtmjfGeLjxOG6TNBGG+tWwoFc0oyWU1VZdTG1m8Tjs2RcJhkTjd68dpU5iIegm6bIS9Km6rQKKkIUoKM8kaiiigGyU03cBvFcmU64haw9RTCG0/KoGxbh+z8RynegNMLm+BKNHltJIuVExrO3R0ScHQzJkbgiij6ypCyzxXFEzNhSiKfPbmDGdG+7i3lsbrcSPVdbaKGVRNYzaWYbzLicVqYSpmXvexXJXZeI5zgyFi2QpnBoJousG5wRCNapnxbi9eh5X5zQIWWeLG4han+wOoqk64y0bA1c0Pf+vlZ7qO96N8fNJ1/dnPfnavX/2uIAibgiBEDcOIt/wct3bbsDVe7jeB/2YYxm/t++APiJeylNB1nVqtxsbGBleuXNkXKSSyJf63f/dHNFWdj58eINvKyg+GPbw1s8F8LM3qVoFjESfn+jwgirhtSufGD7rt3FzYZDNf5tbiJhNRH1Gfk6BD5nifv5NnUDWda/Nm3V0QBLo8dsZDdhaSZe7HCnz87BB3lzfZzJXRBZGTUQ9/NrXMpWN9VBtNAl636S0gwszqJufH+7m7GCMa9JiDblWNiYEwyVyR/pCH+fXNR86R2mxybqyXt6aWCPvMsp5mGAx2+QDoD3nMikbpYUu4XZE6jkX2VpOUtZVENN2hm5TqKhu5GvdieXKVJjObJaqazlbJHKwLD41a+oMONN2g12cjU65jE1RTNCUISBgMhNy8NhHF67BydsBUcAIMdrlJlxvoooTfaenM0kSSTOcpQJQUs3nMMMyZGKKIKEkYCNxdWCfksrC8VWBlK8vxvgAhv4dSXWN2q4RNlujzWYl6rMy25M51VSdVrGFVJG6vpKg3VR5sVak3NW4uJekLOCnVGnz4eDflWpOBkIvFzQLf/+fP4rTuz190L+xH4PQM5crfA/5m699/E/jdnRu0bOR/EXhgGMaecyefB174UmIvafOTUK03+Ve/8QYiArIkcH8tzexGhvODAQzDwGVTONEXJJErE89VebBZ7liNn+gLMtqaYgTQ7XOi6gYNVeNzd1dJV1SCLhuvjHdzcTjMVKv1Oux1cH0+TrlWJ+jz4LFbcNkU7i5v0hfy0e1zMRByE8vX8LvtvDOzzsXxPtNb0dC5MbPGUHfQFAYJAgORILNrWwxHgwgINOp1ZBG28hXG+7qYWozhd9l5sJJAVTXTPq3LTEJqmo7X1hIgtcL/eLaEXRY6x9o5V61kosdlkkrA+TBfk2o5HxVbS6VcwczWO1tdoe3uTH8r9xD12DDUBtWmaSknCuZ7raRL5Mo1biwmEQSRu2sZRqN+RiK+ltORQcDjRJQUREM3zXIFyUw+GubwXUmSAcH01dCNDnGks0XS2RyVepOmqj2M7vqD3FzJsJ6tMdYb4sKAnxMRF+upAgIGy1t5JMEcojPgszIW8XJ2IEDIbWNpq8BGpozfaaFca/KXXh3n0vCzD5rdzxSqw5YrgZ8Cvl4QhDlMK/mfAhAEoUcQhLZXw4eAvw58QhCE260/nzrsGz4JL5QY2tLmoaGhfRtYGIbBP/j5z/C778ySLpa5NNKN3SJjVSQS+Rq3V9J0ex3k8wWOdXs53tdFqdbE67Dy1kyMa3MxQm4bUZ+T1473tLQABv7WDdPrtfDGtDk8VdV0jvcGeO14L9MtGfPp/i7enksgiBIfmOgjXayykMgyGPFRKNdJFmsEvS56Qx4MXWc5tsVaKo9VkfG7ncTTec6P9zG9uklP0MtINMTb9+ZxO6ydRF/A7aSpaYz3dXHx2EDHfu3+chyf08bMRprbCzHGo/6Hqkbg7soml4ZDeB3buihb+2ynanyt0qQoCpSbRmsbs8rQLlHWW92Z+g4j2c1ssaUXMNB0g2PdXuK5CoNBF/daCsRSzdyXpul84d4afpedT5weZGEzh24YZlepopjaBlEC3Ww71wURBLNF3TTSFUzjGsN0uzLqZTB03l0wZ3worf6IkMfOW3Ob3FrJYLc7KNc1zvYHyFUahF0KNxa2qDQ0Xn+wQbWhkas0eO14lHy5jiJJXB4N879+3dM1C/vB03olqtVqZ5TdQWEYRtowjK8zDGO89Xem9fOYYRifav37zwzDEAzDOGsYxvnWnz968p4PhxeWY1hbW2N9fb0jbV5cXHzqGg3gR/7r51jZzHKyP4THbuULd01rtU+cG2Y9mWNTEChXasQLdYbCMhuZAq+Md2OVRb70IEbYa+fWUpKGqhH02JmJpTnZG0ASBc4PdVEum2vyYz3+TlQx3uVE1eBDx3vJtuY4Dke8fPbOEiPdAcJuG7fmzeGox7rNp3pvwM2NmVWO93cxtRzjlYkB3r6/xFhvFwZwfCCMqjZ5+94ckiTSGw7y9tQiIz1dzK9tIgoChXKFzVwFueVZWKzU+fjxQV6fMgfLKoLOWqvS4rZbSBVqFKtxPnC85V4sQKqVpGx7wbZLm36HhUzVJJV8qwJRNyRAI9Vqt26Pm8uW64QcMuvpAlpLH9AXcBLy2DmvyLjtpnbAa1dIFsooktjRRiQLFebiAif7ukgXytgUiYZuzr6s1WutWRymg7YkiGjoZnJSNyMJwJyZIQrMLq8DMsWqn3i+ypXRMBZF4Y3ZBGGPnbutZWK+pqJqBuGAh61SmqjHQrfXRrFaodTQSYrm9+Swyfyjv3DhmSwFt+Np1287Sft+wAshhvn5eUql0iPS5rbI6Ukn9tO/9w6fm1wima9waTRKoVrneF8Ah9XC5yeXATjb48Jid5OppLBaZJY3MlgkifV0kaEuD+NRP9OxLJqmc7ulXrRZZK4vJBjr9rGcqnGiN0DU76LeaCJqKnNbZohdqDS4v57h7FAEp1XGpkjU6iqzxQxnR6PcW4wjCQI+t5237q9w+Vg/16dXuHp8iOnVBK+eHEKRBL54e4bx3iCVcpVSrcmF8X4WY0kEwRxisxRPc2asD1mScDssrG7lODPaz73lTTTVfKKCQK5UIRrwkavU6fG7mE3kqTc1DL2JTZFwWmTS1UfLl0rb3clhIVOt4lQEyqq59M+0nKWLqnmjZCoakmAgNqtkC2UzxG/lKtx2C382HSfoslJoNUCdHQhwbz3LYMiNRZaIeB1EvOZAX4ALQ12omhmNWCxmbqFWb7ZyCwaapiFIMoamIogiumpWMDD0VgXFHPO3tLJGXbIxFxdp6NAXcHCsN0ixava4VBoq/UEnm/kax6Je7sbyXB0NY7PbsVfqWGQDvVHju857WV9d7vQ6POtN+6Tr12hrN94neCHEMDg4iCiKj5yotpbBYrHs+ppP/97b/JvfeRu7RebjZ4Z4dyFOvtJgKOLFIksMBkyjkalEBU0v8+rxPjTDoC/owmFTUHUDQYDP3V1FNwxeO95Hf8hc77279NCARdUNZFHg83dXEIFjUR+Xxjx4bBbuLG0iAJqu8cb0Jv1BN4NdbuY2UtxeSHBlPMp6YosHMxtcmejn1vwGX3dhnGyhTJfbQala5878GkNhP7qqsZYuMtITwgC2skVODZkzGADCPhefe3eWD5waYXUrhyyC02bhnZlVTvZHuL+Wptvvptwwb2bPtuVDplTjZI+XfF3tEENbQdmWb7daQQi67ZSzVQIOC+lKE4/NnODtt5s32KtjXXzx7rJpgQ/mJG/dQGuaS5TRiIdr85t0ex2d4bsRj51r83FkUeB4rx+3XaFYbZApVVlNFbgy3oOuqdxcSGCzWanV6qYQSpSgFTGgaWYSUtfZVvrAEKDeVEEtUytplHQLLptpH9/UdIa6vCwnC5zsDbCQyHFlLMzZqJP5eI7T/QEsLisTPX5+4FMXUCSBbDbbmWFqt9sJBoMEAoF9DYPZiac92N5P5PBCiMFisTymdHxah+X3fPI82VKNd2Y2eHtmHbtF4YMTvawk80wuJ3HbZEa7/VhlkYoqcHt5i0q9yeXRbso1lctjEVRNRzcMxqN+3phZxzDgdH8IWRT40EQf1YbKoN/WGlgLF4bD3FzawuewIgqmvfpHT/dTrTc5Pxyh0WjwZ/fX6PY5uTzeQzJfYiVT58pYN5VymWMRN6/fWeB4XwBdgKnlBMd6gxi6zkIsTW+Xjy6/h5vTywTcDhw2K5vLcT5x6QTvTC1ikSVWEubNdm8pxisnR3njwRrytmtrei3JmbG+R85Vulgjkcvy8bODLLSinVz5UaESest8xa5AtorfaRJDyGWlUFXp9TsoN1TmY2kwdEzxos5w2EvYZWMrX2LQb2UrneN4xEXY68Blk1jPlJjeMI95rNvHF++vE3DZ+MRYtBPVbeUruC0ikiBQa2oc6w0xF0uhG0LLl07DECWEli7CMHQEBBBbfhutm6tSbSDRoJzV8Hs8jPZGqKkGg6EekoUal0cjzMQyDPqsnO7z43fIfPLsKF9/bqhzrkKhEKFQCMMwqFQqpNNpHjx4gKqq+P3+A0UTT7rxDzNT4r2MF0IM+5VFb4fXYePH/8rHmNtI8xO/+kVuLSRIZAs0GnXODQbREbm9bA40vXKshx4d1tLmuLF8pc7F0W6m1lKcHQgScDvIlWtE/WYjlSQILG7mWU0VOB52MJsscXogiCiJvDIexWmVmY1l6Q06+dKU2Wk5EvEyG8/y2klz0nGuXEOSRF451ku9qZKp6fjsFk70h1lOpHBaRI5FzbB/M1tiuKeLoMfB1JLpUTDeH2E9meXqySHK1RrFap0L44PcXljn2GCUufVkW0/I3cU4kZC/k1+oVqsdRaEiiWy1mp3K1TrHe7zMJ4od34V8ycwbuF1uSGc7qsfObEubwtk+Hw6rzORKElE3excEBHPWQzyPd8TC3GaJC0Mhbi1toYgN1rMVSnWVU90OJFlhNV3uKAgzpRoryQKXx3q4u7yJXYKp9Swn+8PYFIGb83F8LgfFchVVNcuWrWJmy91qGzlsG7qk6wYWi8V0eKqlSaRyiLKCx+XA77JRKJcJOyTsss63vzLCJ88OIUm73+DtMXJOp5OBgQFUVSWXyz0WTQSDwScmyvcihlqtdujE43sRL23a9X4NYcd7g/w///jb+NX/+Rb/7k/vkSo1GOmxsJWvcG6wC7VZ551ZcwjPlbEeRFGgUGmwuJmlqepYFZnX761ilaVW40w3bruFuXgWv11mOVNDN8yJStfnE1weifD5u6v0+F2sp0p0+50MhEyl40dPDVCpN0A3CHudJPNlnDYrdovpm6hpGqraZFgIUSwWkRWFqE8m6rUhCAKlSoXhaJDugId6QyWdKxL2uVlNpBEFoVNJ8DttnBjsJp4xxTy6YTAW8fLmnLkEmt9Ic3HCTDh2+5ysZ01iMAzYSBWY6PFxvyUEahk2dQxjO0sLWUKWBPxOC1+cTXGq2wHNKrpgXuy6YVCo1PHYFe61lgyVuhl1nB4IcauVrympAsvxLGGXQr1WwdnqL2nPeTjV4+mY3szFMpwZ7MLjsJIr1zk/bBJgqd5EEkwLvXYisj20B8HAIssgiNhtVpqajt1mQ20l9iRJolqrIxoag2E/3/nKKGciFiYmHm2hfhpkWd41mrh///6hoon3k60bvGRi2I9Zi6qq3L17l0tDQV7/6e/l996Z5Wd+600S2TIXRiIki3WujEWRJIG3Z8xhPOdHIngdVk71hTrtyedHwrwzG6fb5yRfbVBtqJzq9ZEu1jjW66faNPjwyV5U1eCV8Sg2i0S53sRts1Cum+XPSkNFlmRE2UCWJXpCHkQEXHYLdkVGFGFhI0mmXCdbE9koqxjoZhlQV806uwjJzBqJdIHB7gBgkC6UOTXSy4MVs814dm2TgWgXD1bjDPWEWdnKo2o6VkWi3tToCbjJFssIAgTctg4xVJsahWoTQdMI2CUyVa1jH99ORrZXFjZZZCjopljT0HWDB8sJDAxETK1B1OekN+DAbVXYzFfwOSxUGypXxyJYJAGLLDIYcjPbEoYNRQJcm4/jsSu4LQ+forVGk4Zu+kS67QrvzGwwHPFht8ikChXcTjsWi0y2WEGRRVRN35ZrAJfNiiQrVJuaOc5ONTDQkSQZq0XGYrHwoaEI3/8XLnKsJ0A2myWVSj3TtblbNLFbbuJJXZPvJ/cmeIlLif0QQ7lcZnJykqGhIaJRc7bBX3z1BJ+6Ms7/+PJ9/tNn3mWrWKfL1ySRK3N1PIpNkfjSgw0EBJxWC9PraS6MhFE1natjpiLx7lqKc4NB7qykCbssXF9IIgBdXgcb6SITvQFuLyW4PNZDpljF77JhGAayKGKzSHT7XPQGXZwfinCiP4i7ZYGWTCZZWFjgzJlvQBdE/tl//ANuzG9Qq+tUdQFBlMhpOrpux+q3UVBhYzGG3SJjkQQqtQYXjg2i6npHU9Dtc7KylafaUDk90MXNhQQRv4vby1tcHO9HUR5+ZW0NQ61eRdVhPOJmIWWSRtsMVtN1rgwHKdZ0FpJljkVc6LUiDa3ZiRQwIFuuEs+W6PbazTHyI128u5RkIORmNVnAZpHoC7qxKBLzsQwzMTOq8DpsvLuaYyzsQhRgNmFGLkY6z3DIVAEubeb4yKkBppYTpItV+kMejkWDvD2zRsDjIFOoIkkSDquCIEnUVQ2HVaHS0HDZFOwWhRODYT55bpi//NqJR66vp1m6HwayLNPV1UVXV1cnmkilUp2RiIFAgEAg8Eg08SwRgyAIAeC/A0PAMvBdhmFk99hWAm4AG4ZhfOOh3nAfeGkRw9MMYZPJJLOzs5w5cwaPx/PI72yKzN/4xFm+49UJPv0//ic3Y3XSxSphr5Nbm1mzTNnjZ3mriMsms5mvEMuUOD8Y5NpKht6Ak7VUif6gC6ci4NYh4nezmStzabSbxc0cE30hsuUqQZcdRRbp8bv54PEePnCsB5ft0UqKYRisrq6SSqW4dOlSR83573/wO/n9N+/xr371T9HLTSr1BrIIiizT1EWKqoFu9yPIIlMbeQSgWimTraj0h02H6vmNLewWmZn1ZOdn7RLkZiZHb9jsvhQE2GwpGz0uF/OZLDalxrmBALphYFUU/M4AhbrG7HqBwaB5k86tJ0AzRV+SaD6xu30OErkyZweCTK6kcFikzoSniNfOarKAIom8MROj3tR4dSJKvdHk1tIWYY+dtWSBhWSFV8a7OWOzcXd5i+O9Ia7Pxznd52MrX+HN+6uEfQ6CLjvdfhdbhQpuu4VMsca3fegU//Q7XuPG7AbziSy6bhLacMTPByaidHkeKj3bIqP2DfkiiGE72tGEzWYjmUxy/vx5stksm5ubzM7O4nA4cDgcLC8vP4scuu3F8FOCIPxw6/8/tMe2P4DZbu3Z4/fPBcJTsqmHSrXquk6z1WLcRiwWo16vMzw8/OgbtHwZ0uk0586d27Oc2d72rbfe4tVXX+XGXJw/vDnPb789w2CXl8nVLTDgyliUSkPFKUOxWkeUrThb8w2GIz4W4mmGwh6qTQOv05xkVak3CbjsnOoL8OETvZwfjuyZxNJ1nenpaQzD2LM7dHZtk+/9mV8hXawgiiKqplFrmnMlRIsNDB1N05AlEa9FJF8soIgCDcOUC3/47BhvTJt5lPGBHhRF7lQCXjs9yptzmwScFjI1M7S9MtbNjaUUx6I+5pIVU70oyugGuOxWSnUVu0WmWsyiNRrmrAtdRxTNnoYLQ0Gamo7LKlOuq/idVvLlOsVqna18hWy5weXRMNfnEwCMRbzMJ3KMR73QqDGXrBD1O9nMldANgw8e6+HOYpxyK0fxsdMDvD65jGEYjHY5yFUapEt1xqMBBOBXfvi7CLgdj53Hnee9PaJw+5SvdDpNvV5naGjoia9/VjSbTe7du8eFCxc6P2t7RL777rv8yI/8CKlUiu/5nu/hr/7Vv8qpU/tXWwqCMAt8bFsD1euGYUzssl0fplfDTwL/6KsuYtjvUkJVVe7du4fVauXSpUtPZf7t+708HuXyeJT/93e8yvX5OF+6v0YyV+aP313EaTGFMaWayplBB9fm4rwyHuXL99c52+/nxmKKT10cxWVT+NDxXi6ORAi6beYIuSdMK242m9y9e5dAIPBEt6lj/RF+9X//Hv7yv/glssUKdVXDIgpYFYFys4aOiCBbAIN0RUWyOKk06pzoCzC9lqJWLXf25ZQNFlIPO2tXklnsFgmnIpBpGRm3ZdPtJqGQ28ZWScVllSjVVfx2mVQqDXprUI1heiroukaXx8m1+U0GQi5uLZmlz+EuN0tbBS4Nd7GeLnFuMIRNlrDKIn1BN/Mts1pJazCdqnJuKIzTKhHLmFUUVdMZjPjZSOUZ6PLyhbsrXBiNcm8pgWyxYddFfDqspfL8y289QzK2hhEK4ff797wGdkYJhmGY80YzGbzelk1/a5sXEUHspmFoe0R+5CMf4Yd/+Ie5ffs2V69eJZ/PH3T3j3gxCIKwV2PHvwX+GXDohoz94qUuJbYTQ6VS4c6dO/T399PX1/eEVz4Ziizx6vE+Xj3eR7Va5S8ed6B4QhgWF4VKnXK9iSgI2CwyP/jNV9DLWQYjAXp6zByGYZiKvKeRQqVS4e7duwwPDxMOP70hpy/s57/80F/lu//5L4FhmNWTahOHIqEbGiINarqEIJneEaJsY36rgmyxcX8th9NmNgAlswWE1tcUcFlZSxU51evD7nCxVjSXoe1SZXvJ4Xda2SqphNw2CqkKhUzSVBu2jk036GgFxFZQGPY4WE2VGO/2dga3FKtNynWValPl9koSl01hOOyhUmsQz5XJ1toW82ZD0+WxKPPxDHdXtqg2VHoDro6L1K3FBB8/M8jbD1apNlT6u7z8y29/lT93cYxsNttZSjocjk61YK+yodjyiFhYWMBms9HX14eu652oon2dtUV2z4Mo9tNZGQwG+dZv/dZdf//JT36SRCLx2M9/8id/cl/vLwjCNwJbhmHcFAThY/t60TPgK1KubI+wP3XqFD6f77nsP5vNcv/+fU6ePPlEm7jl5QbtFVKbFNrClb1IIZfL8eDBA06dOvVY/uNJGOuL8HP/8C/xt3/mv1Gs1pENA1U1aCJgFQz0ZgPFakM1BAQMNMOcY1nRDFytVuXecADRYuHaXAKvTSJT1ZlJ5Dk/tK2LstUv0V73te3j9WYdvZRGFQDDQJLEjvuSKEDIY8PrUOjxhQCDq6NhnDaZSq2JLImdCsT2duU3pjeoqxofPt7D0pb5ZJzo8XNtLk6mlOATZ/q5vbBJtaHS7XcxvZbi7FCEjXSe63Mx+rt8JDIFPjDRx6eumNHy9rJhuVwmlUpx9+5ddF0nEAjQ1dWFx+PpfD9tR3Gbzcbo6CiCIHRu2jZBtP+0v9tnJYlnHTbzBC8GgP14MXwI+OZWN6UN8AiC8P8zDOOv7esDHBAvnRiWl5fZ3Nzk8uXLhxoZvhs2NjZYXV3l4sWLTxWZiKLYIYM2UT3pC4/H4505F4eR0V49Ocz3fuqD/OIfvoFuQKnexK5IVGp1JElGbdRNtyPF2pkjZxh6p6pwezFuahEEGbfTDtkmqmZ0jE5dFolyq/W63YLdaDRQiymWS4BuoAEIQutJasqPNcAui0xvZLkyGuH6wibeVomyoep8cLwbv9OKIsFia8TfWNjF7ZXWIJ9ynXiuwpXxaKcpy21TeGc2jiyJXBiJsLqVp1xvMrWa4uNnBvjs7UVmqxk+MNHLj/2Vjz12rrbbtw8NDdFsNslkMqytrVEsFnG73QSDQTY3N/F6vY/lq2D3Jcd2olBVtUMkByGJpzVQVSoVAoHAvve3A20vhp9iDy8GwzB+BPgRgFbE8E9eFCnAS8wxgPlUl2WZK1euPJfwzjAMZmZmqNVqXLlyBVl++scRWjdI+wJ5ksR1YWGBUqnExYsX97XvvfAD3/V1vHF3jpuz60iGQaVuCnosskC1qYLRwKKIqKKMpmM2GCEgiEJn+pIk6cyuJdHrGogysVyFi0MhCrUm81sldF1jbnkdtdbgznQKozV3AcEcrGuG33QkyG67heVkEUmA5Zb35USPn2vzm9gViburaUq1JpdHw+QrDU72eFHrNQQE+oJO7rcMWnVNZzNf5eqxHgQM3p4xk6aKLDHc7SNXrjEc8fHZO0tcHu/hzmKCf/gtH3jE4HYvKIpCJBIhEolgGAb5fJ6pqalHbvBQKITT6dz1e9w+bR14bLlxkCXHfm3dDomfAv6HIAjfC6wC3wmmFwPwC+2265eJFxYxtMfJgSnpvXfvHpIkHShbu9d+21/u5OQkXq+Xc+fO7at5xTBMie38/DwAXV1du0YBmqYxNTWFzWbb976fhv/4z/4af+4HP02+XEPXDFx2mUJNNVV/okSj0UA3mggWmzkV29ARRcGUQrd7B2oNUzGsayytxVheTyBKYitnIFKh7czcGpgrShiGhigoaGqrxbI1bTvgtIChc26wy+whCbloqhoCpiX7jQUzmk3kyjQ1nXK1zkqmSrfPwURPgGypRqnWJF2qUa43mVxOMhT2cKIvyMpWnrmNDNlyjdFuH66WA/WN+Tjf96nL5mCZA0LXdRYXFxkYGKC/v596vd4ZBFOpVPD5fIRCIQKBwJ43cDuakGX5kWiiTRCapnUIYidJ7CfHcFiTFsMw0sDX7fLzGPAYKRiG8Trw+qHebJ944UuJ9tr/+PHjzM3NPfP+JEmiVCpx7949RkZG6O7u3tfr2hdBIBDg7NmzpFIppqam0DSNUChEV1cXLpeLRqPB5OQk0Wj0mZKiO+F3u/gnf/nr+Ylf+n1sVgvZcg3DMLDKMrIidxrA9HrFLGkKkumx0CIFTTclwSZPtH0MdHRd6BAJopnIRDf/rbekxpqumcuUVouz02btTADfSJdY3MpzdjDE5EoKl01BkUUuj5oj224smgTh97hYyVQpVBu8NRMHBD5+up87rc7VM4Mhrs2ZStRPnh3g2uwGYA4CmllPcXGkm3iuxN/9hksHPneqqnLnzh26u7vp7TVJxWq10tvbS29vr9nLkst1BGdWq7WTt9hrabk9mlAU5ZFyaDuaMAwDSZI6UebTlhLvlylU8AKJoS0CisfjXLp0CavVethBHI9AVVUmJyc5e/bsvhOBO5OMDoeDgYEBBgYGaDabpFIplpaWKBaLNJtNhoaG6OnpeeZj3Ynv+uRVfv/N23x5chGHRUFRZPKVBprRQNcNHHYb5VoTq6hR10CQH074FkSh03lo/k2rv8AwjVZlueOr2PrUD//WdQRRNhuVRJGIU6CkKHgdNuZbCcT2ENmegJM3W1Lz4xEX/X4bfSEfy63tTvUFO3qGVKFCtaly9Vg3qVZ/hMumcG02jiTJXB4LsLyZp1QzxVC/9A++Cadtb53Kbmg2m9y5c4fe3t6OGnYnRFHsqBGBjlLxwYMHNJtNAoEAoVDoiX0Pu+Um2tUqoFMO3UtQddQrsU+0W1svX778VNem/aBNNNVqlUuXLh2IFJ6UZFQUhWg0iqIozM3NMTY2RrFY5J133sHlctHV1UUoFHqmHMN2/Pt/+jf5+h/41+Qrder1BrIo0NRURFGmUqsjCBK1WgNEySQE2fRKbN/nApjkgNBJViI8tOdvl/LMCGL7MRtgmA1Kiy3ZdJfbxljIhl0WSbQSiA5L2wFKYXariG5ANOBlM1/lVF8AiyyiSKI5aXotZc6S0Aw28xVeOdaDiN6KKECK+ugJuhEwuDga5SOnBw50rprNJrdv32ZgYIBIZP+279uJv611iMfjTE9P43Q6O9HEXmK6nbmJQqFAIpHg5MmTe+YmnuYQ/dWGF0YMAwMDOByO57I+13WdBw8eoOs6oVBoX0SzPRv9pCQjmDZ0m5ubXLp0qXOxGIZBsVhka2uLlZUVFEXp6OcPU51ow2W38g++85P82M//NqbjmoFVVpAViUrdnMOpG+aEbU1vgi48vMFbEYNIq8ehNRnqIUEIne1ESUbXNZNPJAW5pcB0KhL1epNjUT9TrY7IC0NhtuJJhoN2KuUigz4LboeFbKWBLAnMJ0w/R1EUeGMmhtdh5ViPj6amksiW2cyVKdebzGykcVgUroxHWdvKM7ls6hkiPic/9t0fOdB5ajQa3L59m+HhYbq6ug59vmVZJhwOd6ZZl0olUqkUd+7cASAYDBIKhXC73bteI+VymampKc6ePYvL5do1mmiTz9FSYh9wu93PZenQvkC6uroYGhrqZKWfhP2Sgq7rzM7OoqoqFy9efCSiEAQBj8eDx+NhbGyMarVKMpncNS9xUPL77q9/hV/5zFssxtNohkGlodHUNBAEnBaJuqajyBKVhoahNpEVAQ2x5VtgoLemQZnv2l4ytP6nmyVJvWUCKYgi6BqqrqFYLHjtCuPdXkRJhAREfU4mV83uxKDXzY3FLSySaSQ7FrTjsStMb5rRhKo9nHf5xal1NN3gY6f62cqXWU/DsZ4A1+bixLIlXjveS7nW4NZigv/1fzlPxLf/MLter3P79m3GxsYIBoMHOrdPgiAIuN1u3G43w8PDNBoN0uk0KysrlEolvF5vJ4Epy3Knqe/MmTOdm363Ssebb77JwsLC+8bvEV5wVWI3HMT+qlgsMjk5ybFjxzpPjad1ae6XFNrt3V6vl4mJiacek91u3zUvUS6X8fv9hMNhfD7fvi+Of/X3vp2/8S9+kf9/e2ceHWV97//XM1u2yZ5MIAkEkoAkhIRFKmJFCypUtgAqWhSV8qu2KvqzWutye7WtxVrvVXvag/f+Dljbo/U2YROiXqhaNxAQs8oaSCAJSWayzySzPvP8/pg8j4FsE8jMBDKvczxHcXjmO9v7+X4/y/vTbLYpuwQEFWabDUGlwSnalZ2CWiUgukQkjQp5bqQn4yNcqAsewegOMgKo1BqQJNxuCbUgUWVsR6tRc6K+ldR4PVNS4olsMlPXbFas9PMmGDh0qpEmC0xI1OAUJaaNjcDusBGmVZEWr+dwhxWQON3YzhlTB1PHJSAgoFWrGBcfyb5jdbgliZtnpLP2B96Pa7PZbJSUlHDVVVcNWKg2HOh0OsaOHcvYsWNxu920t7crn6tKpaKrq4vs7OwBdwLffPMNv/jFL/jqq68uaWcz0vBbgRN4ftTeOEUDGI1GKisrycvLO++DkQuU+sLbSkar1UpZWRlpaWleZzV6Iscl5C+U3G13/Phxr+MSORnjmJGZwhflp7GLEmE6DahUWB0iIVoNdqeLiBAtnXYnWrWAKAmIbhcqjU6Z9Ax8d5zwvAGeGEP3sBhUKkSXp5FJExLKpDExHKtrUUbK250inx2pxeFykzMmAnVIKJIgKJ4W2alxHOnustSEhlNeZfTMauiykpEQhk6j5mi9J7sRrtNy8GQ98ZGhpBmiaDJ3YbE6+dkPZ3bPnhicrq4uysrKmDJlyrBVxHqLSqUiNjaW2NhYurq6KC4uJiUlhdraWk6dOkVsbCwJF/RzlJSU8Mgjj7Bt2zbS0tL8ul5f43dhcLlcgxpqyt2WV199da8AkSwuff09byoZ29vbldLp6Oihj0K/EJVKpViCyXEJk8k0aFyio6ODNd+/ipKTtWB34RTdqCVPqbIKz+uzObqDkXanYsOuESQc8oTpC0QBQcAtupCnUiOoobuoSXQ6KTtjZFbGGDQqFelJUcRHhnOoshGNCuosLlobm8mbkEhdi5mc8fEkRnlmaKpUwndW+2NiOVjZgIDHKDY7ORqX03NkAEiO1fNJRQ1hOg2PLJ5Fbpp3g17kbftQy86HG1mccnNzlWCiKIrn9XMUFxdjNBrZtWsXO3fuJCMjI2Dr9RV+F4aBjgGiKFJRUYFWq+2327Kva3jTBAWe2Zlnzpxh+vTpPvHn6xmXyMjI6BWXiI+Px2AwYLfbqaysZM73rubu+i7+vO0TRLfnDK/RaumyOVCpNYiim9BQXXf1owsEFXaHA0ET4tEBJBDcCIL6u/747tOFoFJ1+y4IqNVaQjVgc7gwtndR22xmbEwERpeZKYYw4mOj+PKEx7qto8uB3Sliczj5pMJztLh+Sgrj4vR02p3KaL/pEw0UV31nGx9jk0iJDaPL6klbRoSouf2aiV4dHS0WC+Xl5eed5QOBvJPMzs4+L8OgVqvP6+doa2vjnXfeITo6mnvvvZe3336b9PShWcuNdPwaYxhIGOSzZUpKCuPGjev3uj13DN7GE+RdSHt7O7NmzRq21ONg9BWXOHLkCBaLhbFjx2K1Wtlwx818sL+cynNNhIbqcIoSLkEgItQz8j60294NtxtdiBbUGhxO0RM76EYQ5JBCtzyoVKi6U5iCRovLaUcUNNyYM07xZkyIDKW8poVQrRqT1U1qXASTx8ZxrtWCWvhucI0hKoyvTtTj7HbEcrjczJiQiD5UhyE6nOgwHSXVRiQJMsbEUHqmhYmGaH52UxZNDeeorjxBdHQ0iYmJfVYldnR0KFH/QNYBWK1WSktLycrKGnDHcvLkSV544QXefvttpk2bRnt7O+HhA3tJXI74dcfQn4tTe3s7FRUVZGVlDdqI0rMJytvMw5EjR9BoNOTl5QUscqzRaLBarYSEhDBz5kw6OjowGo2cOHGCdTdP59fvfIzd7sThEgkLC8VqcyAg0G7pQqvzmKK6JQnR6Wmf1mrVON2ejEPPUXNqtRa3W8Tt8hw/1CoBtwRRYSF8ebQOm9PF7HQDbZYuQjQqcicYONhdsKRVq6kytjM1NR4BmJ2RRKhGzefH6ogKD+FIbROddidqtYrPj9YiCJCWEMnVGWM873N38DIrNYGV1+cBKEG9nlWJcgzGbrdz9OhR8vLyAvrjstlsiigMdLysqqpi7dq1vPXWW0yb5gmoDsdxdCQS8KNEfX091dXVyig7b67hcDi8CjLK5c0Gg4Hx44dWXDOcyK5PgiAovRc94xJTzWZ2HzrOgaM1ymtxuT3uyDanC51WjVN0I8iZCCBEo8LpkECl8ghJl61bNJ2oNdru91nC5bCTEh/JVSkJfH60BoC6ZjPn2m2kxOuRJInctATP6PhTnuMEApRWm0iN09PQ1klsRAgzJybRYXNg7rJT020cMz0tUamCzE1LwOWWuHZKMs+vvk557T2DeuA5w5tMJkpKSujs7CQlJQWXyxWwYS3yTnXKlCkD/sjPnj3Lj370IzZv3nyei9OVSsCOEpIkcfLkSSwWi9edkeD5onV0dGC32wcsNOrs7KS8vJzMzEwSEhIu7kUMA3KzV0xMDBMmTOj1vshxif9+ej2z7n+BsG6XahC6axKg02oFQYPT5QKNjrDQEMxddk+rNgJWm2d3oNGocdhFRJcTlVaHqrtkOjkuko/LzxAboWOSQc+pJk/WYUysnkOV9YRoVCTF6MkZF09CVChnmiwIeAbK1rZYCNF6dg0Ol8j3Msdw2tjB1HHxhIVomDHRgE6j4kB3n8Rd12cTH9V//CY8PFyp/bjmmmuwWCycPXsWs9k84JHDF/QUhYGyIHV1ddx5551s2rSJ2bNn+3xdIwG/HyXklueysjL0ej0zZng/dFQURaKjozGbzZSXlyMIAgaDgcTExPOCic3NzZw8eZKcnJyABrPsdjtlZWWkpqb2W+cvEx4WyoMrf8Cft/3Ls1sICcHq8PzgJbdESIgKh1sAtxtb97RqyeVEGxLmmT6l1npmL4TqkUQXksuBCEyfmOTxHxA81ZTl58w4XSLXZ6cqMYzcCQYOnmxAJZgZlxDFGVMHuWmJSlwhIkTLsXOetGVJtWdgcLhOw75j54gK06HVCESF6bjt2qu4debAQTiTyURVVRUzZsxAp9Oh1+sZM2bMgEeOS6k07Q+5iOqqq64aUBQaGhpYvXo1r7/+OnPnzh32dYxUfGIGC30bwtbU1GC32zGZTKSlpXndqNRfPMFms2EymTCZTLhcLhISEnC73bS0tJCXlzdsRjAXg7xjmTRpktfVe5IkceNDv+dMYxtanRa7y010ZAQdXQ4iI8KwOLqLljQ6z7EBNfrwMLqcnroFQaUGlYqI8HDcoosYjee4Vd9qwRAZQvaEsXx9qgGHSyQpRk9N9yDgmIgwdBoVIToNXxytRSWoGG+Iorp7Z/Bt95TpGRMSMdscJMfqsTtFrA4XUeFavjpxjqToCHY/exuRYf03SRmNRuXYKDtr94d85GhqalIyOomJif2WLg8Fu91OcXHxoEVURqORVatW8fLLL7NgQa+u6OHE/2eoQfCZMEiShMPhOO/PTpw4QV1dHTNnzvQ6aNOzZ/7CQbk9cTgcVFRUYLFY0Gq1SmowOjra72dX2QouJydnyI01h49Wcc9vNtNpd3nmOwoq6M5AaHQhiN1dmFaXSmmNEHQRCIIEGh06jQqXpGJ8Uhy7HlvAq//4JztKzpExNp6DlfWE6TTMnZJKQ3sXx2qbuSolnqO1LRhiwum0OdGoBWZljMFi89RWAHxb00TOuAS+Od2IRi2QGh9FtbGdvImJlFYZ0WnUvP3YEmak99/oVF9fT21tLdOnTx9UFC7E6XTS3NxMU1PTJR85HA4HxcXFTJo0acBAd1NTE6tWreI3v/kNixYtGtJzXASjVxhqamqorq4mMTGRKVOmeH0Nb4KMoihSXl6OXq8nIyMDt9tNc3MzJpOJjo4OYmJilC+Sr7MSRqORqqoq8vLyLnoL/NLf3mdz0T5UajVWh4vw8HCsDhcqjRa1RuupfFSHAhLRkRGYrQ6ioiLpsLkIDw1Bpdby7NKpTNB1kpycTIJhDDsPHOdv/6pAq1FRWu0pVrouyzPoV0BAo1ZxsLKB5Dg9rRZ79xSqMRysbCAhMoyIUC2hWjUp8XosNk+zlyRJtHXaWTlnEj++Ka/f13Pu3Dnq6+vJy8u75FRxzyNHS0vLkI4csigM1oPR2trKypUree6551i6dOklrddLRp8wuN1ujh8/jsPhIDk5mebmZq+EwVtRsNlsyjm+r6OJbOJhNBppbW1Fr9djMBiIj48f9nqGmpoajEYjubm5Q74rXsjC//sa1cZWRAREt4Cg8RQ8qbUhng9FUKELDcNzihDQ6EJwqzSoNDqmJkezYVY4arVaqbyUS3lLqxvZdbCSb2tMFFcZPXGESWM5eNIjAJOT4xDdEjqtmhaLjVaLjcTocMqqTWSnxnOsrgUBicyxsRw/18KiGRP50/+5ecD3xGQykZeX55OAordHDm9Fob29nVWrVvHEE0+wcuXKYV9vP4weYQBPRVtpaSmxsbGkp6fT3t5OXV3doPZu3lYyysUxU6ZM8arhpmcrdXNzMzqdTgleDjToxpvrVlZWYrPZmDp16rDsSk7VGln13Bt0Ot04XCJaXRgut5tIfQQWmxNUGiIj9XTaXWh0OkRRIjQsjIiwUH55g4EbZuUQExOjlPLKopiYmEh8fDxarZbjdc3sO17HN6cbKakyMi4+koMnG4iJCEGrUWHqsPK9SWM4eLKB8QmR6DQeN6OUOD3tXXZS4yN5cc28fv0bz5w5Q2trK7m5uX6pH+nvyKHX6ykvLyc9PX3ADJXZbOa2227j4YcfZvXq1T5fbw9GjzCIosjnn39Oenq6YrJhNpupqqoiNze37ycbgoeC0Wjk9OnT5ObmXnRxTGdnpxK8FASBxMREDAbDkMql3W634g+ZmZk5rPGMl97+kC1F+0Clxi5KCCoNWo0WUaX1BBsBQsIBAUGjIzxUx/TkCP704x/0qt7r2cfR1NTUZx9HR5ed043tNLR1ctbUTluXHVN7Fy0WG1FhOiob2kiJ01NxtonwEA1vbVjM2Ni+sz6yI1ZOTk5AisrkI0djYyN1dXXo9XpSUlL6PXJ0dnZyxx13sG7dOu655x5/L3f0CAN43uye23Wr1cqxY8f6LBAZSnnzmTNnaGlpYdq0aZe8ZZex2+0YjcbzMhwGg6FfB2Lw3KHKyspITEz0WQHVE38uZPu+b3GJbsLC9dicIoJGiyColIxEVFQkVhekRIex7fFbvGpCkvs4TCbTeX0cF+Mv0RPZXdtms5GdnR1QjwKn00lxcTETJ04kIiKi3yOHzWZj9erV3HXXXfz4xz8OxFJHlzA4HA56Xt/hcFBaWtqrSMTbeILs5CQIAlOmTPHZl07uazAajVitVuLi4nplOOQyWm8nU10Kz/y/9/jHZ6U43QJCt0dDTEwMHTYXarUKt1rL2OgIdv5iKfExQ7cXk1+vyWRS/CV6xiW8RS5ac7lcZGVl+T0b1BPZFm7ChAm9fBJ6Hjk2bNiAxWJh3rx5/OEPfxj2fo2amhrWrl1LQ0MDKpWKn/zkJzz66KMXPmx0C4Moihw6dIg5c+Z89wReioJ8d05ISGD8+PF++9KJokhLSwtGo5GOjg6io6OJjIyktraWrKwsv/kGPPXfu9i571usIqg0GlQqNah16EJCiYkI4e3HbiV9zEUPPFGQ/SX6i0v0hzzjA/DK+MaXuFwuiouLSUtLG1C0HQ4Hd999N5mZmWi1Wk6cOMHOnb1mvVwS9fX11NfXM3PmTMxmM7NmzWLHjh1kZ2f3fNiIEwafVj72nC0BKC67Mj09/Qe6M8k98unp6T6/O19Iz8i+2+2mpqaGU6dOodVqlYItX2Q4LuT3P1nKdTkT2PrFt3xT3USnw0V0qJbZE2N47cHFhIcNT3XgxfhLSJLE0aNH0Wq1wx5nGSqyKIwfP37A74rT6WTdunXceOON/PznP/fZmmVDH/DYHWZlZVFXV3ehMIw4fLpjcDqdvUxV9u3bx7XXXut1kLG1tVWZcxlIAw/4blxdXl4eOp3OJxkOb5AkiY8OlJIQit8i/tB3XCIhIYEzZ84QERFBenp6wEWhpKSEcePGDegq7XK5WL9+PXl5eTzzzDN+W3N1dTXz5s2joqLiwu/y6Nox9Ie3onDu3Dlqa2svem7kcCEHPFtbW88bV9fTLLarqwuj0UhpaelFZzi8Xcvx48dJjtL5/Rx/ob+EyWSitLRUmfDV0tIy5LjEcCGLQmpq6oCiIIoiP/vZz8jKyvKrKFgsFlatWsVrr70W8BucN/h0x+Byuc5rs5YkiX379pGWlkZiYmK/2285st3Z2UlOTo5fOu36Q/4hut1urwOecj+I0WjE6XQqGY5Ljfj7MjU6VORq07i4OFJTUy8qLjGcaykpKSE5OXnAZjVRFNmwYQNJSUls3LjRb++f0+lkyZIlLFy4kMcff7yvh4y4HYPfhEEOMlosFhoaGmhubiYsLAyDwUBCQoLyBZLnRoaFhY2IL39FRQV6vf6it8kXRvwvtodDbt+OjY1lwoQJQ17HcCKKIqWlpRgMhl5j/HrGJZqbm8+L0fjCTs9bUXC73Tz++OPo9XpeeeUVv+1qJEni3nvvJS4ujtdee62/h41OYejLqFWSJDo7O2lsbKSpqQmdTkdcXBwNDQ2kpqYqMwoDhZxaTU5OHra19JXhMBgMg/ZwyGPakpOTfTI6byjIcyTHjh3r1Vr6iksMV5ekLFBjxowZcC1ut5tf/vKXAPzxj3/061Hniy++4Prrr2fatGnK8/7ud7/j1lvPm1U7+oRB7pcYLJ5gMpk4cuQIWq2WkJAQZXpQIFqn5SyIL01eZFNRo9FIS0sLERERyu6p5xHLbrdTWlrKhAkT/J6RuRC5NmDcuHEXZbsv1w8YjcZLqpeA70QhKSlpQOF2u938+7//O2azmTfeeGOkDoUZXcLw1ltvkZ6ezvTp0weME8jmHNOmTSMiIkK5yxiNHhdiXwXy+kK2l/dnFuTCcmWdTqfU+B87dozJkycP6oXpa+SJYMMlUBfWS8jC6E1cwltRkCSJ3/72t9TX17N58+aAxqoGYXQJw/bt23nnnXc4fvw48+fPZ/ny5cyePfu844TcfTdt2rQ+03xyqbLRaEQURRITE0lKSvKJeajJZFL6L/whQv3R1dVFTU0NtbW1REREMHbsWL8JY1/InYkZGRk+2UHJMyXl1O9AcQm3201paSmJiYm94hsXXvPll1+msrKSt956y2/O4BfJ6BIGGavVyocffkhhYSGlpaXccMMNLF68mN27d3PnnXf2mhvZHw6HQ9lJOBwOEhISSEpKGrCfwVtqa2tpaGggLy/PL5H0gWhra+PYsWNMmzYNjUbjkwyHt8il34MZmwwnVqtVCdjKrzkxMZGIiAil+nWgEQOSJPH6669TXFzMO++8E/DP0wtGpzD0xG63s2PHDp544gkMBgMzZsxg5cqVXHfddUP6AC/sZ4iPjycpKWnIQS1Jkjh9+jQWiyXgqVHwOAedOnWqT6OXC8/ocg9HTEyMT0RCnrXgjzmS/dHzNTc1NREZGUl6enq/cQlJkti0aRNffPEF//jHP3xebDZMBIUB4Fe/+hV5eXksXbqUTz75hK1bt/Lll1/yve99j/z8fG644YYhfaCiKCoiYbFYiIuLIykpadCUoNyUpdFomDx5ckBTo/Cd/ZlcWTkQfWU45NqB4QiwyQHYwWYt+AO32015eTkxMTHo9frz4hKye5NWq0WSJDZv3syePXvYunVrQD0/h0hQGPrD5XLx+eefU1BQwKeffsqMGTPIz89n/vz5Q6p6vPAH098katmpOj4+fkQMJJVjLbm5uUM+D3ub4fCWkTJHEs4XhZ6f04Vxib/+9a/Y7XZqamrYs2ePzypl161bx+7duzEYDFRUVAzXZYPC4A2iKLJv3z4KCwv5+OOPyc7OJj8/n5tvvnlIQceek6jb29uVuoGIiAjKy8sZP378RaXdhhP5KCNXeV7q3b7nD0Y2ZJF7OLy5g5rNZioqKgI+RxI8n5/cVzBYUdef//xn/ud//oeYmBgsFgsfffSRT0beffbZZ+j1etauXRsUhkDidrs5dOgQBQUF7N27l8zMTJYtW8aiRYuG5MAs31Vra2sxGo3ExsaSmppKfHx8wOIKPcutfdX3IPdwmEweA1g59duXwI6UOZLwnShERkYyceLEAR9bUFDAli1bKCoqQq/XY7FYfCpq1dXVLFmyJCgMIwW3201JSQmFhYV88MEHjBs3jmXLlnHrrbd65YvQ2trK8ePHmTp1Km63W9mGhoeHX9LW+2KQ+x7CwsLIyMjwS3xjoB6O9vZ2jh07Rl5eXkBTteARTLkUfTBR2LFjB5s2bWL37t1+i4UEhWGECUNP5C9PYWEhRUVFJCQkkJ+fz+LFi/t0AW5sbOTMmTPk5ub28hKwWCxKaXZoaKiy9fZVmkvue4iLiwtYfMPlcikB246ODsV1yWAwBDQIK0kS3377LeHh4YOOli8qKuLVV1+lqKjIr1mToDCMYGHoibwlLywsZNeuXURFRbFs2TKWLl1KYmIiBw4cQKfTeRXY69m/odFolNLs4Up7jaS+B/hunF9aWhqtra1KLGY4MxzeIkkSR44cITQ0lIyMjAEfu2fPHjZu3Mj777/v9aSv4SIoDJeJMPREbtneunUrO3bsoL29neTkZDZt2kRycvKQ7oY9z+cqlUo5n19sxFuel+gPn0hvkOdITp8+XRG+4c5weIssCiEhIYMerT755BOef/55ioqKAvI+BoXhMhQGGUmSWLNmDXFxcUycOJGdO3fidrtZunQp+fn5pKamDkkkbDabUpotSZJSmu3teVyuCxgJfQ/gOVqdPXt2wJFxl5rh8JahWMN9/vnnPPPMMxQVFQUko3TXXXfxr3/9i6amJpKSknjhhReGw1k6KAz+pKKigpycHMDz5auvr2fr1q1s374dq9XK4sWLWb58+ZC9FhwOhyISLpdL2Un0F8mXU4AjoS4APIVUdXV1TJ8+fUi7AHnqk8lkUsSxvwyHt0iSxLFjx9BoNIOKwv79+3niiSfYvXt3wNvyh5mgMIwUjEYj27dvZ9u2bbS0tHDrrbeSn58/5ApI2eKssbERu92u/FjkXgZ5wO1ISAEC1NXVKT0hl3I0kMXRZDIpfStD7eGQRUGtVjNp0qQB/97XX3/Nhg0beO+993w2wyOABIVhJNLc3MzOnTvZunUrDQ0NLFy4kBUrVpCVlTWk4FvPSH9XVxdhYWF0dnYyY8aMgKcAwVNd2dTURG5u7rDWbvR83d72cMgBY0EQBhXjkpISfvrTn7J9+/ZBMxWXKUFhGOm0tbWxa9cutm3bRlVVFTfffDP5+fnk5eUNSSTq6uqorq5Gr9fT1dXl84anwaiurqatrc3nrtJut1spSW9vbycqKkpxqZLFSJIkTpw4gSRJg86gqKioYP369RQWFjJ58mSfrTvABIXhcsJsNlNUVMTWrVs5fvw4CxYsYPny5Vx99dUD/rjOnj2r3Jk1Go3yY2lsbKSjo4OYmBgMBoPfHJV7do/6O/3Y3t6uFJLJTU/t7e3A4INpjh49yv3338+777474ucwXCJBYbhc6ekpUVZWxg033MDy5cuZM2fOeXfCwfoe3G43bW1tNDY20tbWptxRfVEz0HOO5NSpUwNeuGSxWDh27BhdXV1ERkYOmOE4ceIEa9eu5e2332batGkBWLFfGX3C8OSTT7Jr1y50Oh0ZGRm8+eabfhvr5itsNht79+6lsLCQw4cPM3fuXJYtW0ZRURGrV69m9uzZXv0I5TtqY2MjLS0t6PV6pWbgUmMA8nZdFMWAz5GU11NZWYnT6SQrK0tJ//aV4aiqquJHP/oRf/nLX/ocgDwcfPjhhzz66KOIosj69esVs9gAMfqEYc+ePcyfPx+NRsNTTz0FwO9///tLveyIweFwsHfvXh577DHCw8OZOXMmK1asYN68eUOqlpQkiY6ODmXbLVvrDzR/Y6BrHTt2DEEQAj5HUl7PqVOnsNvtZGdn91qP7MxVWlrKs88+i9Pp5Ne//jVr1qzxydpFUWTy5Mns3buX1NRUZs+ezd///vdAHldGnDD4/MB5yy23KF/sOXPmUFtb6+un9Cs6nY7KykoeeughDh8+zD333MMHH3zA97//fR544AE++OADbDbboNcRBIHo6GgmTZrENddcQ0ZGBl1dXRw+fJji4mLOnTuH0+kc9DpyBaFGoxkRogCeGEd/ogCe9zAlJYW8vDwiIyO57777KCoq4sknn/TJeg4ePEhmZibp6enodDruvPPOYR9me7njV4fMLVu2sHr1an8+pV/YsGGD8oWfP38+8+fPRxRFvvzyS7Zu3crzzz/P1KlTyc/P56abbhq0IEgQBPR6PXq9noyMDDo7OzEajRQXFyv9G32dzeWOTbkBaaSIgtVqHTTG0dDQwOrVq3nttdeYN2+eT9dUV1d3nmdkamoqBw4c8OlzXm4MizDcdNNNNDQ09PrzF198keXLlyv/rtFoWLNmzXA85Yiiry+8Wq1m3rx5zJs3D7fbzcGDByksLGTjxo1kZmaSn5/PwoULvfINiIiIYOLEiUycOBGr1YrRaKSsrAxBEM5r8iovLyc6Ojrgk6pkqqqqlEDsQKJgNBq5/fbb+cMf/uBzUQDo6/g8EkR0JDEswvDPf/5zwP//1ltvsXv3bj766KNR+QGoVCrmzJnDnDlzFE+JgoIC/vM//5Px48crnhLe+AmEhYWRlpZGWlqaYq1fUVGB2WxW0qAjgaqqKsxm86Ci0NTUxO23386LL77IggUL/LK21NRUampqlP+ura0dEZ2uIwmfBx8//PBDHn/8cT799FMSExMv9XJXFLKnREFBAe+//z6JiYksX76cJUuWeN1oJQ9fiYuLQ6vV0tjYiNPpPK80299UV1fT0dExaN1Ea2srK1eu5LnnnmPp0qV+W5/L5WLy5Ml89NFHpKSkMHv2bN555x2mTp3qtzVcwIi7W/pcGDIzM7Hb7UrP/Jw5c3jjjTcu9bJXHHImobCwUHEjWrZsGUuWLCExMbHPu648+v1CbwfZWr+xsRGbzab0MQzHvMjBOHPmDG1tbefNauyL9vZ2Vq1axRNPPMHKlSt9uqa+eP/993nssccQRZF169bx7LPP+n0NPRh9whBk6PT0lNi5cychISEsXbqU5cuXM2bMGARB8HqOpMvlorm5mcbGxkuatu0NZ8+epbW1dVBRMJvN3HbbbTz88MNXZDD6IggKg68oKCjg+eef5+jRoxw8eJCrr7460EsaFiRJ4uzZs0q7OMCCBQvYs2cPW7ZsGVKnoWyt39jYiNlsVqz1Y2NjL1kkzp49S0tLy6C9GJ2dndxxxx2sW7eOe+6555Ke8woiKAy+4ujRo6hUKh544AFeeeWVK0YYeiJJEmVlZSxbtoy0tDScTidLlixh+fLlTJw4cUg/7r6s9ZOSki6qf0Pu2hys0cxqtXLHHXewZs0a1q1bN6TnuMIZccIwoid9DoWsrKxAL8HnCILA/v37efPNN/nBD36geEo8/vjjtLW1ceutt7J8+XKvPCVUKhXx8fHEx8cjSRKtra0YjUZOnDhBZGQkSUlJ53VE9kdtba1XomCz2VizZg233347999//0W9/iD+44rZMcjceOONV+yOYSCam5vZsWMH27Zto7Gx8TxPiaHO8rywIzIpKanP/g15RkdeXt6AAuJwOLj77ru55ZZbeOSRRy7rlPW//du/kZCQwKOPPgrAs88+S1JSEhs2bLiUy464N+SyEgZvCqlGqzD0pK2tjffee49t27Zx5swZxVNiqF4MkiRhNpsVz8fQ0FBFJIxGI42NjYOKgtPp5L777uO6667j5z//+WUtCuBJxa5cuZJvvvkGt9vNpEmTOHjw4KU6VY+4N+WyOkoMVkgVxENMTAxr165l7dq1iqfEq6++yokTJxRPiVmzZg0qEoIgEBUVRVRUFJmZmYox7IEDB3C5XGRkZCCKYr/C4HK5WL9+PbNnz74iRAFgwoQJxMfHU1xcTGNjIzNmzPC7fb0/8J9rR5CAEBkZyZ133klBQQH79+/nuuuu47/+67+YO3cuTz31FPv27UMURa+updfrCQsLIywsjFmzZiGKIiUlJRw+fJiamhrsdrvyWFEU+elPf0p2djZPP/20X0ShoKCAqVOnolKp+Prrr332POvXr+cvf/kLb7755hUbRL2sjhIDsX37dh555BFMJhMxMTFMnz6d//3f/w30skYsPT0lvvnmG+bOncuKFSuYO3duv23e9fX1nDt3junTp5+3S+hprd/a2sq+ffuoqakhLS2N3/3ud37bKfgrM+VwOJg2bRpOp5OTJ08Oh3/miNtKXTHCEOTicTgcfPzxx2zdupX9+/dzzTXXkJ+fz/XXX694SjQ0NFBbWzuo5bzRaOTRRx+lvLycMWPGsH79er/fVf0RZ3rwwQeJiYnhpZdeGo7LjThhuKxiDIFkhDn+DCs6nY5FixaxaNEiXC4Xn332GQUFBTz99NPMnDmTpKQkzGYzL7/88oCi4Ha7eeWVVxg3bhzbt2+nra2N6upq/70QP+F2u/nqq68oKCgI9FJ8RjDG4AWiKPLQQw/xwQcfcOTIEf7+979z5MiRQC/LJ2g0GubPn8+mTZsoLS1l8uTJvPvuuxw4cIAHHniA9957j66url5/z+1286tf/QqHw8Ef//hHVCoVcXFxzJw5c1jXd9NNN5GTk9PrH38ZrRw5coTMzEwWLFjApEmT/PKcgSC4Y/CCno4/gOL4c4U7FyvmthUVFURGRnLw4EEKCgrYuHEjkyZNIj8/n1tuuYWIiAh++9vf0tLSwubNm33qRB3ozFR2djanT58O6Br8QVAYvGC0Ov5oNBq2bNmi/HdPT4ni4mIKCgr4j//4DxwOB5MnT6awsHBYB9kECRzBo4QXBB1/zkelUjFr1ixeeuklDh8+zMaNG/nb3/4WcFHYvn07qamp7N+/n8WLF7Nw4cKArudyJrhj8IKg40//qFQqli1bFuhlALBixQpWrFgR6GVcEQR3DF4we/ZsTp48SVVVFQ6Hg3fffXfE/BiCBPEFwR2DF2g0Gv70pz+xcOFCxfEngDZgQYL4nGCBU5AggWfEBayCR4kRyLp16zAYDOTk5AR6KUFGKUFhGIHcd999fPjhh4FeRpBRTFAYRiDz5s3z2j4+SBBfEBSGIEGC9CIoDEFGFE8++SRTpkwhNzeXFStW0NbWFugljUqCwhBkRHHzzTdTUVFBWVkZkydPZuPGjYFe0qgkKAxBRhS33HKL0to9Z84camtrA7yi0cmoF4ZDhw6Rm5uLzWajs7OTqVOnUlFREdA13XXXXVx77bUcP36c1NRUNm/eHND1BIotW7bwwx/+MNDLGJUEC5yA5557DpvNhtVqJTU1laeffjrQS7qi8cbt+8UXX+Trr79m27Zto6FhbcS9wMGEYVQgCIIOOATYgLmSJHnnjnoFIAjCOOCvwBjADfy3JEmvB3hN9wIPAgskSertChPE5wR7JTzEAXpAC4QCnYFdjl9xAT+XJOkbQRAigcOCIOyVJCkgFlWCICwCngJuCIpC4AjuGABBEN4D3gUmAmMlSXo4wEsKGIIg7AT+JEnS3gA9fyUQAjR3/9FXkiQ9GIi1jGZG/Y5BEIS1gEuSpHcEQVAD+wRBmC9J0seBXpu/EQRhAjADCJg9lSRJmYF67iDfEdwxBAFAEAQ98CnwoiRJ2wK9niCBZdSnK4OAIAhaYCvwdlAUgkBwxzDqETy5wLeAFkmSHgvwcoKMEILCMMoRBOH7wOdAOZ50JcAzkiS9H7hVBQk0QWEIEiRIL4IxhiBBgvQiKAxBggTpRVAYggQJ0ougMAQJEqQXQWEIEiRIL4LCECRIkF4EhSFIkCC9CApDkCBBevH/AcgosUS1nIvzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = plt.figure()\n", "ax = fig.add_subplot(1, 1, 1, projection='3d')\n", "\n", "osa_x = np.linspace(-2, 2, 50)\n", "osa_y = np.linspace(-2, 2, 50)\n", "(x,y) = np.meshgrid(osa_x,osa_y)\n", "z = np.exp(-np.sqrt(x**2+y**2))*np.cos(2*x)*np.sin(2*y)\n", "\n", "ax.plot_surface(x, y, z)\n", "ax.set(xlabel='x', ylabel='y', zlabel='z')" ] }, { "cell_type": "markdown", "id": "b8eda923", "metadata": {}, "source": [ "
Cvičení 01.03: Vykreslete průběh funkce log(x) pro x od 0.1 do 10. Osy grafu popište, přidejte legendu a obrázek uložte ve formátu *.jpg.
" ] }, { "cell_type": "code", "execution_count": 50, "id": "c91c0296", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqX0lEQVR4nO3deXzV9Z3v8deHsAQIBLKHBEhYZBERaljUjkrdcCvaqlU7yK12aHvlzkxnuji3dqbrXK+9M72de5221HqrMyq2LoUq1apVESpKwIVdwiYhewJZgIQsn/vHOdAYA5wccvJLct7PxyOPc37r+fww5n1+39/v9/2auyMiItJVA4IuQERE+iYFiIiIREUBIiIiUVGAiIhIVBQgIiISlYFBF9CT0tLSPC8vL+gyRET6lI0bN1a5e3rH+XEVIHl5eRQWFgZdhohIn2Jm+zubryYsERGJigJERESiogAREZGoxNU1kM40NzdTXFxMY2Nj0KX0OomJieTm5jJo0KCgSxGRXijuA6S4uJgRI0aQl5eHmQVdTq/h7lRXV1NcXEx+fn7Q5YhILxRoE5aZPWxmFWa25RTLzcz+zcyKzOx9M/tEu2ULzWxneNm90dbQ2NhIamqqwqMDMyM1NVVnZiJySkFfA/kVsPA0y68BJod/lgI/BTCzBODB8PLpwO1mNj3aIhQendO/i4icTqBNWO6+xszyTrPKIuBRD/U5v97MRplZNpAHFLn7HgAzWxFed1uMSxYR6fXcnaqG4+yvPsK+6qN8WH2EWwrGMjZlWLd+Tm+/BpIDHGg3XRye19n8eZ3twMyWEjp7Ydy4cbGp8iwlJSXR0NAQ9fY333wzDzzwABMmTOBb3/oWjz76KIcOHfrIPpuamrjzzjvZuHEjqampPPnkk+Tl5VFZWcnixYt54YUXuuNQRKSHuDuVDU3sqzrKvqoj7KsO/1QdZX/1EY4cbz257gCD2eNGx12AdNaG4qeZ//GZ7suB5QAFBQX9bvSsrVu30trayoQJEwC44YYbWLZsGZMnT/7Ier/85S8ZPXo0RUVFrFixgm9+85s8+eSTpKenk52dzbp167j44ouDOAQROY3DR4+zp+oIeytDAbG3KvSzv/ooDU0tJ9cbOMAYmzKMvNRhzM1PYXzqMPLShpOXOpycUUMZPLD7r1j09gApBsa2m84FSoDBp5jfp7k73/jGN/j973+PmXHffffxuc99jra2NpYtW8brr79Ofn4+bW1t3HXXXdx888089thjLFq06OQ+5s+f3+m+V65cyXe+8x0gdMaybNky3B0z48Ybb+Sxxx5TgIgEpLG5NRQOlUfYU3WEPZVH2FvVwN6qIxw62nxyvQFGOCSGMycvhbxwSOSnhUJiYELPXtbu7QGyClgWvsYxD6h191IzqwQmm1k+cBC4DbjjbD/su7/byraSurPdzUdMHzOSf7rh3IjWfeaZZ3j33Xd57733qKqqYs6cOVxyySWsW7eOffv2sXnzZioqKpg2bRp33XUXAOvWreP2228/474PHjzI2LGhzB04cCDJyclUV1eTlpZGQUEB9913X/QHKSJn5O6U1zWxu7KBPZUN7D4ZFg0cPHyM9qOLZ44cwoS0JBbOyGZieugsIi9tOONShsXkTCJagQaImT0BXAakmVkx8E/AIAB3/xmwGrgWKAKOAl8IL2sxs2XAi0AC8LC7b+3xA+hma9eu5fbbbychIYHMzEwuvfRSNmzYwNq1a7nlllsYMGAAWVlZLFiw4OQ2paWlpKd/rJPMj3H/eOvdibusMjIyKCnp8ydwIr1CU0sr+6uPsruigaKKBnafCIvKho9clxg+OIEJ6UlcMH40N1+Qy4T0JCakhYIiaUhv/24fEvRdWKf96hy+++qeUyxbTShguk2kZwqx0tkf+dPNBxg6dGhEz2rk5uZy4MABcnNzaWlpoba2lpSUFCD0LMzQoUOjK1okTjU0tbC7ooFd4aA4ERYf1hylte3P/8+OSU5kYkYSN1+Qy6SMJCamJzEhPYnMkUP6/K3yfSPm4sQll1zCz3/+c5YsWUJNTQ1r1qzhRz/6EU1NTTzyyCMsWbKEyspKXnvtNe64I9RiN23aNIqKijjTOCef/vSneeSRR7jwwgt56qmn+NSnPnXyl/eDDz5gxowZsT48kT6p9lgzRRX17CoPhcWuigaKyuspqf3zF7dBCUZe6nCmZo3guvOymZSRxKSMJPLThjO8j5xNRKP/HlkfdNNNN/Hmm29y/vnnY2Y88MADZGVl8dnPfpZXXnmFGTNmcM455zBv3jySk5MBuO6663jttde44oorAPjGN77B448/ztGjR8nNzeWLX/wi3/nOd7j77rtZvHgxkyZNIiUlhRUrVpz83FdffZXrrrsukGMW6S3qG5v5oLyBXeX1odeKej4or6e8runkOomDBjApI4l5E1JPhsSkjCTGpwzr8QvYvYGdrnmkvykoKPCOA0pt376dadOmBVRR5BoaGkhKSqK6upq5c+eybt06srKyOHbsGAsWLGDdunUkJCREte9LLrmElStXMnr06I8t6yv/PiKRamxupaiigZ1loYDYWV7PB2UfPaMYOiiBSRlJTM5MYnLGCM4Jv+aOHsqAAX272SkaZrbR3Qs6ztcZSB9x/fXXc/jwYY4fP863v/1tsrKygNA1kO9+97scPHgwqgclKysr+bu/+7tOw0OkL2trcz6sOcqOsnp2lNWxs6yenWX17Ks+wolLFIMHDmBSehJz81OYnDmCKZkjmJI1gpxR8RkUXaUA6SNee+21Uy67+uqro95veno6N954Y9Tbi/QGtUeb2V5Wx47SOnaU1bO9LHRWcaw5dNeTGYxPGcaUrBFcPzObKVkjmZI1grzU+Gx66i4KEDj5QJ18VDw1b0rfcOKsYltpHdtL69hWEnpt3/w0etggpmaN5HNzxjItewRTs0YyOTOJYYP15667xf2/aGJiItXV1erSvYMT44EkJiYGXYrEqcbmVnaVN7C1pJat4aDYXlp38lmKhAHGhLThFOSlMC17JNOyRzA9eyTpI/r+7bF9RdwHSG5uLsXFxVRWVgZdSq9zYkRCkVhraGphW0kdW0tq2XIw9FpU0UBL+GLF8MEJTB8zkpsvyGX6mJFMz05mcmYSiYOiu3FEukfcB8igQYM04p5ID6o91hwOilo2H6xj68Fa9lYfOdmVR1rSEGbkjOTyaRmcOyaZ6dkjGZcyTBe1e6G4DxARiZ2GppZQUBTXsvlg6Gdv1ZGTy8ckJzIjJ5kbZ+cwI2ck545JJnOkmk37CgWIiHSLxuZWtpfW8X5xLe8VH+b94lp2VzacPLMYk5zIebnJ3HxBLjNykpkxZiSpSUOCLVrOigJERLqsrc3ZU9XAuwdqeffAId47UMuOsjqaW0NpkZY0hFljk7lh5hhmjk3mvJxk0hQW/Y4CRETOqObIcd49cIh3PzzMOwcO8+6Bw9Q3hgYzShoykPNykrn7kxOYNTaZmbmjyE5O1J1QcUABIiIf0dLaxs7yejZ9eJh39h/inQOHT163GGAwJWskN5w/hlljRzF77CgmpCeRoAvccUkBIhLn6hqb2bT/EJv2H2Ljh6GzjBPPWqQlDeYT40Zza8FYZo8bxczcZD2QJyfpN0Ekjrg7Bw8fo3DfIQr311C47xA7y+txD51dTMseyWc+kcsF40dzwfjR5I4eqqYoOaWgRyRcCPyE0KiCD7n7/R2Wfx34fHhyIDANSHf3GjPbB9QDrUBLZz1FisS7tjZnV0UDb++r4e29NRTuq6E03O1H0pCBzB43imtmZFOQN5pZY0f167ErpPsF9ttiZgnAg8CVQDGwwcxWufu2E+u4+4+AH4XXvwH4qrvXtNvNAnev6sGyRXq11jZnW0kdb+2t5q29NWzYV8Pho80AZIwYwpz8FObmpVCQN5qpWSN17ULOSpBfN+YCRe6+B8DMVgCLgG2nWP924Ikeqk2kT2htc7aW1LJ+TzXr99SwYW8N9U2hu6PGpw7jymmZzMlPYV5+CuNShqk5SrpVkAGSAxxoN10MzOtsRTMbBiwElrWb7cAfzMyBn7v78lNsuxRYCkQ1XoZIb9LW5mwvq+PN3dWs3xM6yzhxO+2EtOFcf/4Y5k9IYV5+KlnJeqJbYivIAOnsq9Cp+g+/AVjXofnqYncvMbMM4CUz2+Huaz62w1CwLIfQiIRnW7RIT3J39lcfZW1RFX/aXcWbu6s5FG6SyksdxvUzs5k/IZULJ6SSoS5ApIcFGSDFwNh207lAySnWvY0OzVfuXhJ+rTCzZwk1iX0sQET6mpojx1lbVMW6XVWsLari4OFjAGQnJ/KpqZlcNDGViyalkp08NOBKJd4FGSAbgMlmlg8cJBQSd3RcycySgUuBv2w3bzgwwN3rw++vAr7XI1WLdLPjLW0U7q/hjV1VvLGrkq0ldbjDiMSBXDQxlS9fNpGLJ6aSnzZc1zCkVwksQNy9xcyWAS8Suo33YXffamZfDi//WXjVm4A/uPuRdptnAs+G/2caCDzu7i/0XPUiZ2d/9RFe/6CS13dW8uaeao4eb2XgAGP2uFF89Ypz+IvJaZyXk6zhVqVXs3gatrSgoMALCwuDLkPiUGNzK2/treHVHRW8/kHlya5BxqYM5dJz0rlkcjoXTkxlROKggCsV+Tgz29jZs3Z6akgkRkprj/HHHRW8uqOCdUXVHGtuZcjAAcyfkMqdF47nsikZ5KXq1lrpuxQgIt2krc3ZUlLLy9vKeXl7BdtK6wDIHT2UWwpyWTAlg/kTUhk6WMOwSv+gABE5C43Nrby5u5qXtpfzyvZyyuuaGGBwwfjRfHPhVC6flsHkjCSdZUi/pAAR6aL6xmb+uKOCP2wt57WdFRw53srwwQlcOiWdy6dmsmBqBinDBwddpkjMKUBEIlBz5DgvbSvjhS1lrCuq5nhrG2lJQ/j0rByump7JhRNTSRykpimJLwoQkVOoamjixa1lrN5cyvo9NbS2Obmjh7LkovFcfW4Ws8eNVmeEEtcUICLt1Bw5zgtbynh+cwlv7q6mzUN9TH3l0oksnJHFuWNG6nqGSJgCROJefWMzL24t53fvlbC2qIrWNic/bTj3LJjEdTOzmZI5QqEh0gkFiMSlppZWXt1Ryar3DvLy9gqOt7SRO3ooSy+ZwPUzs5merTMNkTNRgEjccHcK9x/imU0Hef79EuoaW0hLGswdc8fx6VljmD12lEJDpAsUINLvfVh9lKc3FfPMO8UcqDnG0EEJLJyRxY2zc7h4Yqr6mxKJkgJE+qWjx1tYvbmMXxce4O29NZjBxRPT+OoV53D1uVka+1ukG+j/Iuk33J33imt5csOH/O69UhqaWshPG87Xr57CTbNzGDNK42eIdCcFiPR5tceaeXZTMSs2HGBHWT1DByVw7XnZfG7OWObkjdZ1DZEYUYBIn+TuvHvgMI+/9SG/e7+ExuY2zstJ5oc3zeDT549Rt+giPUABIn1KY3Mrq94t4dH1+9hysI5hgxO4aXYOd8wdz3m5yUGXJxJXAg0QM1sI/ITQiIQPufv9HZZfBqwE9oZnPePu34tkW+lfig8d5T/W72fF2weoPdbM5IwkvrfoXG6anaOzDZGABBYgZpYAPAhcCRQDG8xslbtv67DqG+5+fZTbSh/m7mzYd4iH1+7lD9vKMDOump7JkovymJefomsbIgEL8gxkLlDk7nsAzGwFsAiIJATOZlvp5Zpb21i9uZSH3tjL5oO1jBo2iC9dOpHF88frTiqRXiTIAMkBDrSbLgbmdbLehWb2HlACfM3dt3ZhW8xsKbAUYNy4cd1QtsRKQ1MLK97+kIfX7qWktpEJ6cP54U0z+MzsXI3iJ9ILBRkgnbU/eIfpTcB4d28ws2uB3wKTI9w2NNN9ObAcoKCgoNN1JFhVDU38v3V7efTN/dQ3tjAvP4Xv3ziDBVMyGKDu0kV6rSADpBgY2246l9BZxknuXtfu/Woz+3czS4tkW+n9Dh4+xvLXd7NiwwGOt7ZxzYwsvnTJRM4fOyro0kQkAkEGyAZgspnlAweB24A72q9gZllAubu7mc0FBgDVwOEzbSu914Gao/z7a0U8tbEYd7hpdg5fvmwiE9OTgi5NRLogsABx9xYzWwa8SOhW3IfdfauZfTm8/GfAzcBXzKwFOAbc5u4OdLptIAciETtQc5T/88ddPL3pIAlm3DZnHF++bCI5ujAu0idZ6O9xfCgoKPDCwsKgy4g7Bw8f4//+sYjfFB5gwADj8/PG8eVLJ5I5MjHo0kQkAma20d0LOs7Xk+gSM1UNTTz4ahGPrf8QgM/PG8d/XTBJwSHSTyhApNs1NLXwizV7eOiNPRxrbuWWC8by11dMVlOVSD+jAJFu09zaxooNB/jJyx9Q1XCca8/L4u+vmqKL4yL9lAJEzpq78+rOCn7w/Hb2VB5hbl4Kv7hzKrPHjQ66NBGJIQWInJUPyuv5/nPbeGNXFRPShvOLOwu4YlqG+qkSiQMKEIlKXWMzP3l5F7/60z6GD07g29dPZ/H88QweqPHFReKFAkS6xN159p2D/PPqHVQfaeK2OeP4+tVTSBk+OOjSRKSHKUAkYkUVDdz3282s31PDrLGjePi/FDAzd1TQZYlIQBQgckZNLa08+Mcifvr6boYOSuCfbzqP2+aMVUeHInFOASKntXH/Ib759PsUVTSwaNYY7rtuOukjhgRdloj0AgoQ6dSx46088OIOfvWnfYxJHsqvvjCHy6ZkBF2WiPQiChD5mI37D/G137zH3qojLJ4/nm9eM5WkIfpVEZGP0l8FOel4Sxs/fvkDfv76brKTh/L4X83joolpQZclIr2UAkQA2F3ZwF8/8Q5bS+r4XMFY7rt+GiMSBwVdloj0YgqQOOfuPLnhAN/93TYSBw3g54sv4Opzs4IuS0T6gEADxMwWAj8hNCjUQ+5+f4flnwe+GZ5sAL7i7u+Fl+0D6oFWoKWzvurl9BqaWrj36fd57v1SLp6Uyr/eOktdrYtIxAILEDNLAB4EriQ0xvkGM1vl7tvarbYXuNTdD5nZNcByYF675QvcvarHiu5HtpfWcc9jm9hXfYSvXz2Fr1w6Uc91iEiXBHkGMhcocvc9AGa2AlgEnAwQd/9Tu/XXA7k9WmE/9fTGYv77s5tJHjqIJ/5qPvMmpAZdkoj0QUEGSA5woN10MR89u+jobuD37aYd+IOZOfBzd1/e2UZmthRYCjBu3LizKriva25t4wfPbeORN/dz4YRU/s8ds0lL0kOBIhKdIAOks/aSTgdoN7MFhALkk+1mX+zuJWaWAbxkZjvcfc3HdhgKluUQGhP97Mvum6oamviv/7mJt/fV8MVP5nPvNVMZmKCec0UkekEGSDEwtt10LlDScSUzmwk8BFzj7tUn5rt7Sfi1wsyeJdQk9rEAEdhZVs/dj2ygsr6Jn9w2i0WzcoIuSUT6gSC/gm4AJptZvpkNBm4DVrVfwczGAc8Ai939g3bzh5vZiBPvgauALT1WeR/y2s4KPvvTP9HU0savv3ShwkNEuk1gZyDu3mJmy4AXCd3G+7C7bzWzL4eX/wz4RyAV+PfwCHcnbtfNBJ4NzxsIPO7uLwRwGL3aY2/t59u/3cLUrJE8tKSAMaOGBl2SiPQj5h4/lwUKCgq8sLAw6DJizt353y/v4iev7GLBlHT+7x2fYLj6shKRKJnZxs6etdNflX6mtc2577dbeOLtD7nlglz++TPnMUgXy0UkBhQg/cjxljb+9sl3WL25jHsWTORrV00h3MwnItLtFCD9RGNzK/c8tolXdlRw33XT+OJfTAi6JBHp5xQg/cDR4y0sfXQja4uq+OFNM/j8vPFBlyQicUAB0scdO97KXb/awNt7a/hft5zPzReotxcR6RkKkD6sqaWVpf9RyFt7a/jxrbO4cbae8RCRnqPbc/qo5tY27nnsHd7YVcX//MxMhYeI9LguBUj4CfCEWBUjkWlrc/7u1+/x8vZyvr/oXG6dM/bMG4mIdLPTBoiZDTCzO8zseTOrAHYApWa21cx+ZGaTe6ZMOcHd+cHz2/ndeyXce81UFl+YF3RJIhKnznQG8iowEfgHIMvdx7p7BvAXhMbnuN/M/jLGNUo7v3hjDw+v28sXLs7jS5foVl0RCc6ZLqJf4e7NHWe6ew3wNPC0mQ2KSWXyMSvfPcg/r97BdTOz+fZ10/WQoIgE6rRnICfCw8yu6LjMzJa0X0dia+P+Q3z9N+8zLz+Ff731fA0/KyKBi/Qi+j+a2U/DF9Ezzex3wA2xLEz+rLT2GF/6j41kj0rk54svYMhA3ccgIsGLNEAuBXYD7wJrCXWffnOsipI/O3a8lb96tJDG5lYeurOAUcMGB12SiAgQeYCMJjRe+W6gCRhvaoCPOXfnm0+/z9aSOv7t9llMzhwRdEkiIidFGiDrgd+7+0JgDjAGWBezqgSA/1y/n1XvlfC1q6bwqamZQZcjIvIRkQbIFe7+MIC7H3P3vwbuPdsPN7OFZrbTzIrM7GP7s5B/Cy9/38w+Eem2fd2Wg7V8/7ntLJiSzlcunRh0OSIiH3OmBwnzANz9w47L3H1N+A98VL33hZ9ofxC4BpgO3G5m0zusdg0wOfyzFPhpF7bts+oam7nn8U2kJg3mX26dpTuuRKRXOtNzID8yswHASmAjUAkkApOABcDlwD8BxVF89lygyN33AJjZCmARsK3dOouARz007u56MxtlZtlAXgTb9knuzj88vZniQ8d4cul8UobrormI9E6nDRB3vyX8zf7zwF1ANnAM2A48D/zQ3Ruj/Owc4EC76WJCF+rPtE5OhNsCYGZLCZ29MG7cuChL7Tkr3y3h+c2lfGPhFAryUoIuR0TklM7Ynbu7bwO+FYPP7qxdxiNcJ5JtQzPdlwPLAQoKCjpdp7coq23kH1du4YLxo/nSJbruISK9W0TjgZjZZzqZXQtsdveKKD+7GGjfjWwuUBLhOoMj2LZPOXHLbnOr8y+3nE+CrnuISC8X6YBSdwMXEupcEeAyQrf2nmNm33P3/4jiszcAk80sHzgI3Abc0WGdVcCy8DWOeUCtu5eaWWUE2/YpT7x9gNc/qOR7i84lL2140OWIiJxRpAHSBkxz93IAM8skdEfUPGAN0OUAcfcWM1sGvAgkAA+7+1Yz+3J4+c+A1cC1QBFwFPjC6bbtag29RWntMX74/DYunpTKX2o8cxHpIyINkLwT4RFWAZzj7jVmFnVniu6+mlBItJ/3s3bvHbgn0m37qh88t52WNud/3DRTt+yKSJ8RaYC8YWbPAb8JT98MrDGz4cDhWBQWL9Z8UMnzm0v5+yvPYVzqsKDLERGJWKQBcg/wGeCThO6AegR4OnyGsCBGtfV7jc2t/OPKLeSnDWfppRocSkT6logCxN3dzNYCxwndLvt2ODzkLCxfs4d91Ud59K656qJdRPqciPrCMrNbgbcJNV3dCrxlZurO/SyUHD7Gg68Wcd3MbC45Jz3ockREuizSJqxvAXNOPPNhZunAy8BTsSqsv/vxSx/gDv9wzdSgSxERiUqkvfEO6PDAYHUXtpUOdpXX8/SmYu68cDy5o3XhXET6pkjPQF4wsxeBJ8LTn6Of3EIbhAde3MnwwQO5Z8GkoEsREYlapBfRv25mnwUuJnQX1nJ3fzamlfVTG/fX8NK2cr521TmMVk+7ItKHRXoGgrs/DTwdw1r6PXfn/t/vIH3EEO76ZH7Q5YiInJXTBoiZ1dN5L7dG6O7ekTGpqp9aV1TNhn2H+P6NMxg2OOLsFhHplc40HsiIniokHvzs9d1kjBjCrQVRDeIoItKr6E6qHrK5uJa1RVXc9cl8PTQoIv2CAqSH/GzNbkYMGcgd83r/qIgiIpFQgPSA/dVH+P3mUj4/fzwjEwcFXY6ISLdQgPSA5Wv2MHDAAO66OC/oUkREuo0CJMaqGpr4zcZiPntBDhkjE4MuR0Sk2wQSIGaWYmYvmdmu8OvoTtYZa2avmtl2M9tqZn/Tbtl3zOygmb0b/rm2Z48gck9tLOZ4Sxt367kPEelngjoDuRd4xd0nA6+EpztqAf7e3acB84F7zGx6u+U/dvdZ4Z9e2a2Ku/PkhgPMzUthUobuiBaR/iWoAFlEaFAqwq83dlzB3UvdfVP4fT2wHcjpqQK7w1t7a9hbdYTPzRkbdCkiIt0uqADJdPdSCAUFkHG6lc0sD5gNvNVu9jIze9/MHu6sCazdtkvNrNDMCisrK7uh9MitePtDRiQO5Nrzsnv0c0VEekLMAsTMXjazLZ38LOrifpII9cH1t+5eF579U2AiMAsoBf7lVNu7+3J3L3D3gvT0nhu46fDR46zeUsZNs3MYOlgPDopI/xOzDpnc/YpTLTOzcjPLdvdSM8sGKk6x3iBC4fGYuz/Tbt/l7db5BfBc91XePX77zkGOt7Sp+UpE+q2gmrBWAUvC75cAKzuuYGYG/BLY7u7/2mFZ+zahm4AtMaozKu7Oig0HmJmbzLljkoMuR0QkJoIKkPuBK81sF3BleBozG2NmJ+6ouhhYDHyqk9t1HzCzzWb2PrAA+GoP139a7xfXsqOsXmcfItKvBdKnuLtXA5d3Mr8EuDb8fi2hbuM7235xTAs8S6s3lzIowbh+5pigSxERiRk9id7N3J0XtpZx0cQ0koeq3ysR6b8UIN1sR1k9+6uPsnBGVtCliIjElAKkm/1+SxlmcOX0zKBLERGJKQVIN3txSxlz8lJISxoSdCkiIjGlAOlGeyob2Flez8Jz1XwlIv2fAqQbvbg19Hzj1br+ISJxQAHSjV7YWsbM3GRyRg0NuhQRkZhTgHSTksPHeO/AYd19JSJxQwHSTf64I9Sd11XTFSAiEh8UIN1k/Z5qskYmMjF9eNCliIj0CAVIN3B31u+pYd6EFEJ9QIqI9H8KkG6wu/IIVQ1NzJ+QGnQpIiI9RgHSDd7aWw2gABGRuKIA6Qbr99SQOXIIeanDgi5FRKTHKEDOUuj6RzXz8lN1/UNE4kogAWJmKWb2kpntCr+OPsV6+8IDR71rZoVd3b4n7K06QmW9rn+ISPwJ6gzkXuAVd58MvBKePpUF7j7L3Qui3D6m1u+pAWD+hJSgShARCURQAbIIeCT8/hHgxh7evtus31NNxogh5Kfp+Q8RiS9BBUimu5cChF8zTrGeA38ws41mtjSK7TGzpWZWaGaFlZWV3VR+uLgT1z8m6PqHiMSfmI2JbmYvA5316/GtLuzmYncvMbMM4CUz2+Hua7pSh7svB5YDFBQUeFe2PZN91UepqG9S85WIxKWYBYi7X3GqZWZWbmbZ7l5qZtlAxSn2URJ+rTCzZ4G5wBogou1j7a09oec/5uXrArqIxJ+gmrBWAUvC75cAKzuuYGbDzWzEiffAVcCWSLfvCVtL6kgaMlD9X4lIXAoqQO4HrjSzXcCV4WnMbIyZrQ6vkwmsNbP3gLeB5939hdNt39N2ltUzJWuErn+ISFyKWRPW6bh7NXB5J/NLgGvD7/cA53dl+57k7uwoq+P688cEWYaISGD0JHqUyuoaqWtsYWrWiKBLEREJhAIkSjvK6gGYmjUy4EpERIKhAInSznCATMnUGYiIxCcFSJR2lNaRnZxI8rBBQZciIhIIBUiUdoTvwBIRiVcKkCg0t7axu7JB1z9EJK4pQKKwt+oIza2uO7BEJK4pQKJw4g4sNWGJSDxTgERhR2kdAwcYE9OTgi5FRCQwCpAo7CyrZ2J6EoMH6p9PROKX/gJGQXdgiYgoQLqsvrGZg4ePKUBEJO4pQLrog/ITXZgoQEQkvilAumh7qe7AEhEBBUiX7a8+QuKgAeSMGhp0KSIigVKAdFFZXRNZIxM1iJSIxL1AAsTMUszsJTPbFX4d3ck6U8zs3XY/dWb2t+Fl3zGzg+2WXdtTtZfXNZIxMrGnPk5EpNcK6gzkXuAVd58MvBKe/gh33+nus9x9FnABcBR4tt0qPz6x3N1Xd9w+VsrrGslSgIiIBBYgi4BHwu8fAW48w/qXA7vdfX8sizoTd6e8rpHMkUOCLENEpFcIKkAy3b0UIPyacYb1bwOe6DBvmZm9b2YPd9YEdoKZLTWzQjMrrKysPKui64610NjcRqbOQEREYhcgZvaymW3p5GdRF/czGPg08Jt2s38KTARmAaXAv5xqe3df7u4F7l6Qnp7e9QNpp7y+EUABIiICDIzVjt39ilMtM7NyM8t291IzywYqTrOra4BN7l7ebt8n35vZL4DnuqPmMymrDQVIVrICREQkqCasVcCS8PslwMrTrHs7HZqvwqFzwk3Alm6t7hTK68JnICMUICIiQQXI/cCVZrYLuDI8jZmNMbOTd1SZ2bDw8mc6bP+AmW02s/eBBcBXe6LoEwGSoYvoIiKxa8I6HXevJnRnVcf5JcC17aaPAqmdrLc4pgWeQnldE6OGDSJxUEIQHy8i0qvoSfQuKKtrVPOViEiYAqQLKuoaydQFdBERQAHSJaEzEF3/EBEBBUjEWtucyvom3cIrIhKmAIlQdUMTbY46UhQRCVOARKgsfAuvOlIUEQlRgESovK4JQB0pioiEKUAipDMQEZGPUoBEqKKukQEGqUk6AxERAQVIxMpqG0kfMYSEARrKVkQEFCARK69vUvOViEg7CpAIlddqLHQRkfYUIBEqr9dY6CIi7SlAItDY3Mrho826hVdEpB0FSAQqTj4DojMQEZETFCAROPEMiAJEROTPAgkQM7vFzLaaWZuZFZxmvYVmttPMiszs3nbzU8zsJTPbFX4dHct6T4xEqI4URUT+LKgzkC3AZ4A1p1rBzBKAB4FrgOnA7WY2Pbz4XuAVd58MvBKejhmNhS4i8nGBBIi7b3f3nWdYbS5Q5O573P04sAJYFF62CHgk/P4R4MaYFBpWXtdI4qABjBwayAjAIiK9Um++BpIDHGg3XRyeB5Dp7qUA4deMU+3EzJaaWaGZFVZWVkZVyMT0JBadn4OZnkIXETkhZl+pzexlIKuTRd9y95WR7KKTed7VOtx9ObAcoKCgoMvbA9w2dxy3zR0XzaYiIv1WzALE3a84y10UA2PbTecCJeH35WaW7e6lZpYNVJzlZ4mISBf15iasDcBkM8s3s8HAbcCq8LJVwJLw+yVAJGc0IiLSjYK6jfcmMysGLgSeN7MXw/PHmNlqAHdvAZYBLwLbgV+7+9bwLu4HrjSzXcCV4WkREelB5h7VZYE+qaCgwAsLC4MuQ0SkTzGzje7+sWf2enMTloiI9GIKEBERiYoCREREoqIAERGRqMTVRXQzqwT2d2GTNKAqRuX0ZvF43PF4zBCfxx2Pxwxnd9zj3T2948y4CpCuMrPCzu486O/i8bjj8ZghPo87Ho8ZYnPcasISEZGoKEBERCQqCpDTWx50AQGJx+OOx2OG+DzueDxmiMFx6xqIiIhERWcgIiISFQWIiIhERQFyCma20Mx2mlmRmcV0zPXewMzGmtmrZrbdzLaa2d8EXVNPMbMEM3vHzJ4LupaeYmajzOwpM9sR/m9+YdA1xZqZfTX8u73FzJ4ws8Sga4oFM3vYzCrMbEu7eSlm9pKZ7Qq/ju6Oz1KAdMLMEoAHgWuA6cDtZjY92KpirgX4e3efBswH7omDYz7hbwgNGRBPfgK84O5TgfPp58dvZjnAXwMF7j4DSCA0xlB/9CtgYYd59wKvuPtk4JXw9FlTgHRuLlDk7nvc/TiwAlgUcE0x5e6l7r4p/L6e0B+UnNNv1feZWS5wHfBQ0LX0FDMbCVwC/BLA3Y+7++FAi+oZA4GhZjYQGMafRzjtV9x9DVDTYfYi4JHw+0eAG7vjsxQgncsBDrSbLiYO/pieYGZ5wGzgrYBL6Qn/G/gG0BZwHT1pAlAJ/L9w091DZjY86KJiyd0PAv8L+BAoBWrd/Q/BVtWjMt29FEJfFoGM7tipAqRz1sm8uLjf2cySgKeBv3X3uqDriSUzux6ocPeNQdfSwwYCnwB+6u6zgSN0U5NGbxVu818E5ANjgOFm9pfBVtX3KUA6VwyMbTedSz893W3PzAYRCo/H3P2ZoOvpARcDnzazfYSaKT9lZv8ZbEk9ohgodvcTZ5hPEQqU/uwKYK+7V7p7M/AMcFHANfWkcjPLBgi/VnTHThUgndsATDazfDMbTOhi26qAa4opMzNCbeLb3f1fg66nJ7j7P7h7rrvnEfpv/Ed37/ffSt29DDhgZlPCsy4HtgVYUk/4EJhvZsPCv+uX089vHOhgFbAk/H4JsLI7djqwO3bS37h7i5ktA14kdLfGw+6+NeCyYu1iYDGw2czeDc/77+6+OriSJIb+G/BY+AvSHuALAdcTU+7+lpk9BWwidMfhO/TTLk3M7AngMiDNzIqBfwLuB35tZncTCtNbuuWz1JWJiIhEQ01YIiISFQWIiIhERQEiIiJRUYCIiEhUFCAiIhIVBYiIiERFASIiIlFRgIgEyMzmmNn7ZpZoZsPD41XMCLoukUjoQUKRgJnZD4BEYCihPqr+R8AliUREASISsHB3IhuARuAid28NuCSRiKgJSyR4KUASMILQmYhIn6AzEJGAmdkqQt3J5wPZ7r4s4JJEIqLeeEUCZGZ3Ai3u/riZJQB/MrNPufsfg65N5Ex0BiIiIlHRNRAREYmKAkRERKKiABERkagoQEREJCoKEBERiYoCREREoqIAERGRqPx/4N6URQSBdQYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x = np.linspace(1e-1,10,100)\n", "y = np.log10(x)\n", "fig, ax = plt.subplots()\n", "ax.plot(x,y,label='log(10)')\n", "ax.set_xlabel('x')\n", "ax.set_ylabel('log(x)')\n", "ax.legend()\n", "fig.savefig('log10.jpg',dpi=100)" ] }, { "cell_type": "markdown", "id": "1398abec", "metadata": {}, "source": [ "
Tip: Další příklady a návody pro práci s knihovnou matplotlib lze nalézt na https://matplotlib.org/.
" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 5 }